Maximum bipartite subgraphs in H-free graphs

被引:0
作者
Jing Lin
机构
[1] Fujian University of Technology,School of Computer Science and Mathematics
来源
Czechoslovak Mathematical Journal | 2022年 / 72卷
关键词
bipartite subgraph; -free; partition; 05C35; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph of G. Given a fixed graph H and a positive integer m, let f(m, H) denote the minimum possible cardinality of f(G), as G ranges over all graphs on m edges that contain no copy of H. In this paper we prove that f(m,θk,s)⩾12m+Ω(m(2k+1)/(2k+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( {m,{\theta _{k,s}}} \right) \geqslant {1 \over 2}m + \Omega \left( {{m^{\left( {2k + 1} \right)/\left( {2k + 2} \right)}}} \right)$$\end{document}, which extends the results of N. Alon, M. Krivelevich, B. Sudakov. Write Kk′ and Kt,s′ for the subdivisions of Kk and Kt,s. We show that f(m,Kk′)⩾12m+Ω(m(5k−8)/(6k−10))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( {m,K_k^\prime } \right) \geqslant {1 \over 2}m + \Omega \left( {{m^{\left( {5k - 8} \right)/\left( {6k - 10} \right)}}} \right)$$\end{document} and f(m,Kt,s′)⩾12m+Ω(m(5t−1)/(6t−2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( {m,K_{t,s}^\prime } \right) \geqslant {1 \over 2}m + \Omega \left( {{m^{\left( {5t - 1} \right)/\left( {6t - 2} \right)}}} \right)$$\end{document}, improving a result of Q. Zeng, J. Hou. We also give lower bounds on wheel-free graphs. All of these contribute to a conjecture of N. Alon, B. Bollobás, M. Krivelevich, B. Sudakov (2003).
引用
收藏
页码:621 / 635
页数:14
相关论文
共 34 条
  • [1] Alon N(1996)Bipartite subgraphs Combinatorica 16 301-311
  • [2] Alon N(2003)Maximum cuts and judicious partitions in graphs without short cycles J. Comb. Theory, Ser. B 88 329-346
  • [3] Bollobás B(1998)Bipartite subgraphs of integer weighted graphs Discrete Math. 181 19-29
  • [4] Krivelevich M(2005)MaxCut in Comb. Probab. Comput. 14 629-647
  • [5] Sudakov B(2002)-free graphs Random Struct. Algorithms 21 414-430
  • [6] Alon N(2021)Problems and results on judicious partitions Combinatorica 41 465-494
  • [7] Halperin E(1973)More on the extremal number of subdivisions Can. J. Math. 25 475-485
  • [8] Alon N(1959)Some extremal properties of bipartite subgraphs Acta Math. Acad. Sci. Hung. 10 337-356
  • [9] Krivelevich M(1997)On maximal paths and circuits in graphs Discrete Math. 177 267-271
  • [10] Sudakov B(1983)The size of the largest bipartite subgraphs Combinatorica 3 83-93