Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{4}$$\end{document}-codes and their Gray map images as orthogonal arrays

被引:0
作者
Peter J. Cameron
Josephine Kusuma
Patrick Solé
机构
[1] Queen Mary University of London,School of Mathematical Sciences
[2] School of Mathematics and Statistics,Mathematics Department
[3] Telecom ParisTech,undefined
[4] King Abdulaziz University,undefined
关键词
Commutative ring; Code; Lee weight; Orthogonal array; Gray map; 05B15; 94B05;
D O I
10.1007/s10623-016-0225-4
中图分类号
学科分类号
摘要
A classic result of Delsarte connects the strength (as orthogonal array) of a linear code with the minimum weight of its dual: the former is one less than the latter. Since the paper of Hammons et al., there is a lot of interest in codes over rings, especially in codes over Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{4}$$\end{document} and their (usually non-linear) binary Gray map images. We show that Delsarte’s observation extends to codes over arbitrary finite commutative rings with identity. Also, we show that the strength of the Gray map image of a Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{4}$$\end{document} code is one less than the minimum Lee weight of its Gray map image.
引用
收藏
页码:109 / 114
页数:5
相关论文
empty
未找到相关数据