A classic result of Delsarte connects the strength (as orthogonal array) of a linear code with the minimum weight of its dual: the former is one less than the latter. Since the paper of Hammons et al., there is a lot of interest in codes over rings, especially in codes over Z4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {Z}_{4}$$\end{document} and their (usually non-linear) binary Gray map images. We show that Delsarte’s observation extends to codes over arbitrary finite commutative rings with identity. Also, we show that the strength of the Gray map image of a Z4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {Z}_{4}$$\end{document} code is one less than the minimum Lee weight of its Gray map image.