GROUPS WHOSE PROPER SUBGROUPS OF INFINITE RANK ARE FINITE-BY-HYPERCENTRAL OR HYPERCENTRAL-BY-FINITE

被引:0
|
作者
A. DILMI
N. TRABELSI
机构
[1] University Ferhat Abbas Setif 1,Laboratory of Fundamental and Numerical Mathematics, Department of Mathematics
[2] Campus El Bez,undefined
来源
Acta Mathematica Hungarica | 2022年 / 167卷
关键词
finite-by-hypercentral; hypercentral-by-finite; locally (soluble-by-finite); rank; primary 20F19; secondary 20F99;
D O I
暂无
中图分类号
学科分类号
摘要
A group G is said to be of finite rank r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with a such property. If there is no such r, then the group G is said to be of infinite rank. In the present paper, it is proved that if G is an X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{X}$$\end{document}-group of infinite rank whose proper subgroups of infinite rank are finite-by-hypercentral (respectively, hypercentral-by-finite), then all proper subgroups of G are finite-by-hypercentral (respectively, hypercentral-by-finite), where X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{X}$$\end{document} is the class defined by N.S. Černikov as the closure of the class of periodic locally graded groups by the closure operations P´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\acute{P}}$$\end{document}, P`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\grave{P}}$$\end{document} and L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{L}$$\end{document}.
引用
收藏
页码:492 / 500
页数:8
相关论文
共 20 条
  • [1] GROUPS WHOSE PROPER SUBGROUPS OF INFINITE RANK ARE FINITE-BY- HYPERCENTRAL OR HYPERCENTRAL-BY-FINITE
    Dilmi, A.
    Trabelsi, N.
    ACTA MATHEMATICA HUNGARICA, 2022, 167 (02) : 492 - 500
  • [2] On locally finite groups whose subgroups of infinite rank have some permutable property
    A. Ballester-Bolinches
    S. Camp-Mora
    M. R. Dixon
    R. Ialenti
    F. Spagnuolo
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 1855 - 1862
  • [3] A note on infinite groups whose subgroups are close to be normal-by-finite
    De Giovanni, Francesco
    Saccomanno, Federica
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (01) : 49 - 53
  • [4] On groups whose subgroups of infinite rank are Sylow permutable
    A. Ballester-Bolinches
    S. Camp-Mora
    L. A. Kurdachenko
    F. Spagnuolo
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 717 - 723
  • [5] Parabolic subgroups of groups of column-finite infinite matrices
    Holubowski, Waldemar
    Slowik, Roksana
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 519 - 524
  • [6] GENERALIZED BAUMSLAG-SOLITAR GROUPS: RANK AND FINITE INDEX SUBGROUPS
    Levitt, Gilbert
    ANNALES DE L INSTITUT FOURIER, 2015, 65 (02) : 725 - 762
  • [7] Finite groups with an automorphism of prime order whose centralizer has small rank
    Khukhro, EI
    Mazurov, VD
    JOURNAL OF ALGEBRA, 2006, 301 (02) : 474 - 492
  • [8] On finite soluble groups of fixed rank
    Monakhov V.S.
    Trofimuk A.A.
    Siberian Mathematical Journal, 2011, 52 (5) : 892 - 903
  • [9] ON FINITE SOLUBLE GROUPS OF FIXED RANK
    Monakhov, V. S.
    Trofimuk, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (05) : 892 - 903
  • [10] Graphs whose minimal rank is two: The finite fields case
    Barrett, W
    Van der Holst, H
    Loewy, R
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2005, 14 : 32 - 42