Dangerous tangents: an application of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence to the control of dynamical systems

被引:0
作者
Rosario Maggistro
Paolo Pellizzari
Elena Sartori
Marco Tolotti
机构
[1] University of Trieste,Department of Economics, Business, Mathematics and Statistics ‘Bruno de Finetti’
[2] Ca’ Foscari University of Venice,Department of Economics
[3] University of Padova,Department of Mathematics “Tullio Levi
[4] Ca’ Foscari University of Venice,Civita”
关键词
Dynamical systems; Finite population dynamics; -convergence; Saddle-node bifurcations; Social interaction; 91B14; 49J45; C61; C63; D91;
D O I
10.1007/s10203-022-00372-z
中图分类号
学科分类号
摘要
Inspired by the classical riot model proposed by Granovetter in 1978, we consider a parametric stochastic dynamical system that describes the collective behavior of a large population of interacting agents. By controlling a parameter, a policy maker seeks to minimize her own disutility, which in turn depends on the steady state of the system. We show that this economically sensible optimization is ill-posed and illustrate a novel way to tackle this practical and formal issue. Our approach is based on the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence of a sequence of mean-regularized instances of the original problem. The corresponding minimum points converge toward a unique value that intuitively is the solution of the original ill-posed problem. Notably, to the best of our knowledge, this is one of the first applications of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence in economics.
引用
收藏
页码:451 / 480
页数:29
相关论文
共 31 条
[1]  
Allen PM(1979)A dynamic model of growth in a central place system Geogr. Anal. 11 256-272
[2]  
Sanglier M(2012)Social interaction and conformism in a random utility model J. Econ. Dyn. Control 36 1855-1866
[3]  
Barucci E(2012)Identity, reputation and social interaction with an application to sequential voting J. Econ. Interac. Coord. 7 79-98
[4]  
Tolotti M(1969)A new product growth for model consumer durables Manage. Sci. 15 215-227
[5]  
Barucci E(2003)Equilibrium concepts for social interaction models Int. Game Theory Rev. 5 193-209
[6]  
Tolotti M(2001)A general existence result for the principal-agent problem with adverse selection J. Math. Econom. 35 129-150
[7]  
Bass FM(2007)When does convergence in the mean imply uniform convergence? Am. Math. Mon. 114 58-60
[8]  
Blume L(2005)The monopolist’s problem: existence, relaxation, and approximation Calc. Var. Partial Differ. Equ. 24 111-129
[9]  
Durlauf S(2013)Entanglement between demand and supply in markets with bandwagon goods J. Stat. Phys. 151 494-522
[10]  
Carlier G(1978)Threshold models of collective behavior Am. J. Sociol. 83 1420-1443