Commutators of parabolic fractional integrals with variable kernels in vanishing generalized variable Morrey spaces

被引:0
|
作者
I. Ekincioglu
S. Z. Khaligova
A. Serbetci
机构
[1] Dumlupinar University,Department of Mathematics
[2] Istanbul Medeniyet University,Department of Mathematics
[3] Azerbaijan State Pedagogical University,Department of Mathematics
[4] Ankara University,undefined
来源
Positivity | 2022年 / 26卷
关键词
Parabolic fractional integral with rough kernel; Vanishing generalized variable Morrey spaces; Commutators; BMO spaces; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the boundedness of parabolic fractional integral operators TΩ,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Omega ,\alpha }$$\end{document} with variable kernels Ω(·,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\cdot ,\cdot )$$\end{document} belonging to L∞(Rn)×Ls(Sn-1),s>n/(n-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }({\mathbb {R}^n}) \times L^{s}({\mathbb {S}}^{n-1}), s>n/(n-\alpha )$$\end{document}, and their commutators [b,TΩ,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,T_{\Omega ,\alpha }]$$\end{document} with BMO functions in variable exponent generalized Morrey spaces Mp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{p(\cdot ),\varphi }$$\end{document} and variable exponent vanishing generalized Morrey spaces VMp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{p(\cdot ),\varphi }$$\end{document}. We find the sufficient conditions on the pair (φ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi ,\psi )$$\end{document} which ensures the boundedness of the operators TΩ,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Omega ,\alpha }$$\end{document} and [b,TΩ,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,T_{\Omega ,\alpha }]$$\end{document} from Mp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{p(\cdot ),\varphi }$$\end{document} to Mq(·),ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{q(\cdot ),\psi }$$\end{document} and from VMp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{p(\cdot ),\varphi }$$\end{document} to VMq(·),ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{q(\cdot ),\psi }$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Lipschitz estimates for rough fractional multilinear integral operators on variable local generalized Morrey spaces
    Akbulut, A.
    Ekincioglu, I.
    Khaligova, S. Z.
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2023, 16 (02): : 63 - 77
  • [42] Vector-valued multilinear singular integrals with nonsmooth kernels and commutators on generalized weighted Morrey space
    Zhao, Nan
    Zhou, Jiang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [43] Vector-valued multilinear singular integrals with nonsmooth kernels and commutators on generalized weighted Morrey space
    Nan Zhao
    Jiang Zhou
    Journal of Inequalities and Applications, 2020
  • [44] Calderon-Zygmund operators with kernels of Dini's type on generalized weighted variable exponent Morrey spaces
    Guliyev, V. S.
    POSITIVITY, 2021, 25 (05) : 1771 - 1788
  • [45] SINGULAR INTEGRAL OPERATORS WITH ROUGH KERNELS ON CENTRAL MORREY SPACES WITH VARIABLE EXPONENT
    Fu, Zunwei
    Lu, Shanzhen
    Wang, Hongbin
    Wang, Liguang
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 505 - 522
  • [46] Multilinear fractional integral operators on central Morrey spaces with variable exponent
    Wang, Hongbin
    Xu, Jingshi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [47] On the Commutators of Marcinkiewicz Integral with a Function in Generalized Campanato Spaces on Generalized Morrey Spaces
    Ku, Fuli
    Wu, Huoxiong
    MATHEMATICS, 2022, 10 (11)
  • [48] Commutators of intrinsic square functions on generalized Morrey spaces
    Xiaomei Wu
    Taotao Zheng
    Journal of Inequalities and Applications, 2014
  • [49] Commutators of intrinsic square functions on generalized Morrey spaces
    Wu, Xiaomei
    Zheng, Taotao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [50] Fractional integral related to Schrödinger operator on vanishing generalized mixed Morrey spaces
    Guliyev, Vagif S.
    Akbulut, Ali
    Celik, Suleyman
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):