Commutators of parabolic fractional integrals with variable kernels in vanishing generalized variable Morrey spaces

被引:0
|
作者
I. Ekincioglu
S. Z. Khaligova
A. Serbetci
机构
[1] Dumlupinar University,Department of Mathematics
[2] Istanbul Medeniyet University,Department of Mathematics
[3] Azerbaijan State Pedagogical University,Department of Mathematics
[4] Ankara University,undefined
来源
Positivity | 2022年 / 26卷
关键词
Parabolic fractional integral with rough kernel; Vanishing generalized variable Morrey spaces; Commutators; BMO spaces; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the boundedness of parabolic fractional integral operators TΩ,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Omega ,\alpha }$$\end{document} with variable kernels Ω(·,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\cdot ,\cdot )$$\end{document} belonging to L∞(Rn)×Ls(Sn-1),s>n/(n-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }({\mathbb {R}^n}) \times L^{s}({\mathbb {S}}^{n-1}), s>n/(n-\alpha )$$\end{document}, and their commutators [b,TΩ,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,T_{\Omega ,\alpha }]$$\end{document} with BMO functions in variable exponent generalized Morrey spaces Mp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{p(\cdot ),\varphi }$$\end{document} and variable exponent vanishing generalized Morrey spaces VMp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{p(\cdot ),\varphi }$$\end{document}. We find the sufficient conditions on the pair (φ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi ,\psi )$$\end{document} which ensures the boundedness of the operators TΩ,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Omega ,\alpha }$$\end{document} and [b,TΩ,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,T_{\Omega ,\alpha }]$$\end{document} from Mp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{p(\cdot ),\varphi }$$\end{document} to Mq(·),ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{q(\cdot ),\psi }$$\end{document} and from VMp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{p(\cdot ),\varphi }$$\end{document} to VMq(·),ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{q(\cdot ),\psi }$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Vanishing generalized Orlicz-Morrey spaces and fractional maximal operator
    Deringoz, Fatih
    Guliyev, Vagif S.
    Samko, Stefan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (1-2): : 125 - 147
  • [32] FRACTIONAL INTEGRAL ASSOCIATED WITH SCHRODINGER OPERATOR ON VANISHING GENERALIZED MORREY SPACES
    Akbulut, Ali
    Guliyev, Ramin, V
    Celik, Suleyman
    Omarova, Mehriban N.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (03): : 789 - 805
  • [33] Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents
    Wang, Hongbin
    Niu, Chenchen
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (02) : 493 - 514
  • [34] Commutators of Cauchy-Fantappie Type Integrals on Generalized Morrey Spaces on Complex Ellipsoids
    Dao, Nguyen Anh
    Duong, Xuan Thinh
    Ha, Ly Kim
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (07) : 7538 - 7567
  • [35] N-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents
    Niu, Chenchen
    Wang, Hongbin
    AIMS MATHEMATICS, 2023, 8 (05): : 10379 - 10394
  • [36] Commutators for multilinear singular integrals on weighted Morrey spaces
    Songbai Wang
    Yinsheng Jiang
    Journal of Inequalities and Applications, 2014
  • [37] Commutators for multilinear singular integrals on weighted Morrey spaces
    Wang, Songbai
    Jiang, Yinsheng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [38] Intrinsic square functions and commutators on Morrey-Herz spaces with variable exponents
    Abdalmonem, Afif
    Scapellato, Andrea
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 12408 - 12425
  • [39] Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces
    Sultan, Babar
    Sultan, Mehvish
    Khan, Aziz
    Abdeljawad, Thabet
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [40] Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents
    Wang, Hongbin
    Xu, Jingshi
    Tan, Jian
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (05) : 1011 - 1034