Commutators of parabolic fractional integrals with variable kernels in vanishing generalized variable Morrey spaces

被引:0
|
作者
I. Ekincioglu
S. Z. Khaligova
A. Serbetci
机构
[1] Dumlupinar University,Department of Mathematics
[2] Istanbul Medeniyet University,Department of Mathematics
[3] Azerbaijan State Pedagogical University,Department of Mathematics
[4] Ankara University,undefined
来源
Positivity | 2022年 / 26卷
关键词
Parabolic fractional integral with rough kernel; Vanishing generalized variable Morrey spaces; Commutators; BMO spaces; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the boundedness of parabolic fractional integral operators TΩ,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Omega ,\alpha }$$\end{document} with variable kernels Ω(·,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\cdot ,\cdot )$$\end{document} belonging to L∞(Rn)×Ls(Sn-1),s>n/(n-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }({\mathbb {R}^n}) \times L^{s}({\mathbb {S}}^{n-1}), s>n/(n-\alpha )$$\end{document}, and their commutators [b,TΩ,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,T_{\Omega ,\alpha }]$$\end{document} with BMO functions in variable exponent generalized Morrey spaces Mp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{p(\cdot ),\varphi }$$\end{document} and variable exponent vanishing generalized Morrey spaces VMp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{p(\cdot ),\varphi }$$\end{document}. We find the sufficient conditions on the pair (φ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi ,\psi )$$\end{document} which ensures the boundedness of the operators TΩ,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Omega ,\alpha }$$\end{document} and [b,TΩ,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,T_{\Omega ,\alpha }]$$\end{document} from Mp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{p(\cdot ),\varphi }$$\end{document} to Mq(·),ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{q(\cdot ),\psi }$$\end{document} and from VMp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{p(\cdot ),\varphi }$$\end{document} to VMq(·),ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{q(\cdot ),\psi }$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Compactness of Commutators for Singular Integrals on Morrey Spaces
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (02): : 257 - 281
  • [22] COMPACTNESS FOR COMMUTATORS OF MARCINKIEWICZ INTEGRALS IN MORREY SPACES
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (02): : 633 - 658
  • [23] Singular integrals with variable kernel and fractional differentiation in homogeneous Morrey-Herz-type Hardy spaces with variable exponents
    Yang, Yanqi
    Tao, Shuangping
    OPEN MATHEMATICS, 2018, 16 : 326 - 345
  • [24] Boundedness of fractional oscillatory integral operators and their commutators on generalized Morrey spaces
    Eroglu, Ahmet
    BOUNDARY VALUE PROBLEMS, 2013,
  • [25] Boundedness of fractional oscillatory integral operators and their commutators on generalized Morrey spaces
    Ahmet Eroglu
    Boundary Value Problems, 2013
  • [26] Commutators of Cauchy–Fantappiè Type Integrals on Generalized Morrey Spaces on Complex Ellipsoids
    Nguyen Anh Dao
    Xuan Thinh Duong
    Ly Kim Ha
    The Journal of Geometric Analysis, 2021, 31 : 7538 - 7567
  • [27] Weak Estimates of Singular Integrals with Variable Kernel and Fractional Differentiation on Morrey-Herz Spaces
    Yang, Yanqi
    Tao, Shuangping
    JOURNAL OF FUNCTION SPACES, 2017, 2017
  • [28] Commutators and generalized local Morrey spaces
    Guliyev, V. S.
    Omarova, M. N.
    Ragusa, M. A.
    Scapellato, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) : 1388 - 1402
  • [29] Maximal commutators and commutators of potential operators in new vanishing Morrey spaces
    Almeida, Alexandre
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [30] COMMUTATORS GENERATED BY BMO-FUNCTIONS AND THE FRACTIONAL INTEGRALS ON ORLICZ-MORREY SPACES
    Iida, Takeshi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (03): : 655 - 683