Möbius parametrizations of curves in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document}

被引:0
作者
Martin Chuaqui
机构
[1] Pontificia Universidad Católica de Chile,Facultad de Matemáticas
关键词
Primary 53A04, 53A55; Secondary 34C10; Ahlfors’ Schwarzian; projective structure; simple curves; curvature; Möbius; oscillation;
D O I
10.1007/s00013-009-3116-3
中图分类号
学科分类号
摘要
We use Ahlfors’ definition of Schwarzian derivative for curves in euclidean spaces to present new results about Möbius or projective parametrizations. The class of such parametrizations is invariant under compositions with Möbius transformations, and the resulting curves are simple. The analysis is based on the oscillatory behavior of the associated linear equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^{\prime\prime} + \frac{1}{4}k^{2}u = 0$$\end{document}, where k = k(s) is the curvature as a function of arclength.
引用
收藏
页码:626 / 636
页数:10
相关论文
共 38 条
[21]   Q¯′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{Q}'$$\end{document}-curvature flow on pseudo-Einstein CR manifolds [J].
Ali Maalaoui ;
Vittorio Martino .
Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 (4) :1851-1878
[24]   Some non-Riemannian curvature properties of the new class of (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-metrics [J].
Jila Majidi ;
Akbar Tayebi ;
Ali Haji-Badali .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2024, 118 (2)
[28]   Uniqueness of closed self-similar solutions to σkα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\sigma _k^{\alpha }}$$\end{document}-curvature flow [J].
Shanze Gao ;
Haizhong Li ;
Hui Ma .
Nonlinear Differential Equations and Applications NoDEA, 2018, 25 (5)
[29]   Curvature of C5⊕C12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_5\oplus C_{12}$$\end{document}-Manifolds [J].
Salvatore de Candia ;
Maria Falcitelli .
Mediterranean Journal of Mathematics, 2019, 16 (4)
[30]   Generalized R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}$\end{document} - contractions and fixed point theorems with an application to boundary value problem governing transverse oscillation in homogeneous bar [J].
Naveen Mani ;
Rahul Anjana ;
undefined Shukla .
Journal of Inequalities and Applications, 2025 (1)