Möbius parametrizations of curves in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document}

被引:0
|
作者
Martin Chuaqui
机构
[1] Pontificia Universidad Católica de Chile,Facultad de Matemáticas
关键词
Primary 53A04, 53A55; Secondary 34C10; Ahlfors’ Schwarzian; projective structure; simple curves; curvature; Möbius; oscillation;
D O I
10.1007/s00013-009-3116-3
中图分类号
学科分类号
摘要
We use Ahlfors’ definition of Schwarzian derivative for curves in euclidean spaces to present new results about Möbius or projective parametrizations. The class of such parametrizations is invariant under compositions with Möbius transformations, and the resulting curves are simple. The analysis is based on the oscillatory behavior of the associated linear equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^{\prime\prime} + \frac{1}{4}k^{2}u = 0$$\end{document}, where k = k(s) is the curvature as a function of arclength.
引用
收藏
页码:626 / 636
页数:10
相关论文
共 38 条