Minimax Fractional Programming for n-Set Functions and Mixed-Type Duality under Generalized Invexity

被引:0
作者
H. C. Lai
T. Y. Huang
机构
[1] Chung-Yuan Christian University,Department of Applied Mathematics
来源
Journal of Optimization Theory and Applications | 2008年 / 139卷
关键词
Minimax fractional programming; Partial differentiable ; -set function; Mixed-type dual; Duality theorems; Quasi/Pseudo-invex set function;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the sufficient optimality conditions for a minimax programming problem involving p fractional n-set functions under generalized invexity. Using incomplete Lagrange duality, we formulate a mixed-type dual problem which unifies the Wolfe type dual and Mond-Weir type dual in fractional n-set functions under generalized invexity. Furthermore, we establish three duality theorems: weak, strong, and strict converse duality theorem, and prove that the optimal values of the primal problem and the mixed-type dual problem have no duality gap under extra assumptions in the framework.
引用
收藏
相关论文
共 38 条
[1]  
Lai H.C.(1997)Optimality conditions for multiobjective programming with generalized (ℱ, J. Math. Anal. Appl. 215 443-460
[2]  
Liu J.C.(1999), J. Optim. Theory Appl. 101 109-125
[3]  
Lai H.C.(1999))-convex set functions J. Math. Anal. Appl. 229 587-604
[4]  
Liu J.C.(1999)Duality without a constraint qualification for minimax fractional programming J. Math. Anal. Appl. 230 311-328
[5]  
Tanaka K.(2000)Duality for a minimax programming problem containing J. Math. Anal. Appl. 244 442-462
[6]  
Lai H.C.(2003)-set functions ANZIAM J. 44 339-354
[7]  
Liu J.C.(2003)Necessary and sufficient conditions for minimax fractional programming J. Nonlinear Convex Anal. 4 25-41
[8]  
Lai H.C.(2005)On minimax fractional programming of generalized convex set functions Ann. Oper. Res. 133 47-61
[9]  
Liu J.C.(2006)Minimax fractional programming involving generalized invex functions Taiwan. J. Math. 10 1685-1695
[10]  
Tanaka K.(1961)Fractional programming for variational problem with (ℱ, Q. Appl. Math. 19 239-244