Weak solutions for hyperbolic partial fractional differential equations in Banach spaces

被引:0
作者
Benchohra M. [1 ]
Mostefai F.-Z. [2 ]
Nieto J.J. [3 ]
机构
[1] Laboratoire de Mathématiques, Université de Sidi Bel-Abbès, 22000 Sidi Bel-Abbès
[2] Département de Mathématiques, Université de Saida, 20000 Saida, BP 138, Cité Ennasr
[3] Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Santiago de Compostela, Santiago de Compostela
关键词
Banach space; Caputo fractional derivative; Hyperbolic differential equation; Left sided mixed Pettis integral; Measure of weak noncompactness; Weak solution;
D O I
10.1007/s13370-013-0140-z
中图分类号
学科分类号
摘要
This paper is devoted to study the existence of solutions under the Pettis integrability assumption for an initial value problem for a hyperbolic differential equation of fractional order, involving the Caputo fractional derivative. We use the measure of weak noncompactness and Mönch's fixed point theorem. © 2013 African Mathematical Union and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:605 / 615
页数:10
相关论文
共 34 条
  • [1] Abbas S., Benchohra M., N'Guerekata G.M., Topics in fractional differential equations, (2012)
  • [2] Agarwal R.P., Benchohra M., Seba D., On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math., 55, pp. 221-230, (2009)
  • [3] Akhmerov R.R., Kamenskii M.I., Patapov A.S., Rodkina A.E., Sadovskii B.N., Measures of Noncompactness and Condensing Operators, (1992)
  • [4] Alvarez J.C., Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid, 79, pp. 53-66, (1985)
  • [5] Ball J.M., Weak continuity properties of mapping and semi-groups, Proc. Roy. Soc. Edinburgh Sect. A, 72, pp. 257-280, (1973)
  • [6] Banas J., Goebel K., Measures of Noncompactness in Banach Spaces, (1980)
  • [7] Benchohra M., Graef J.R., Mostefai F., Weak solutions for nonlinear fractional differential equations on reflexive Banach spaces, Electron. J. Qual. Theory Differ. Equ., 54, pp. 1-10, (2010)
  • [8] Benchohra M., Henderson J., Seba D., Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12, 4, pp. 419-428, (2008)
  • [9] Benchohra M., Mostefai F., Weak solutions for nonlinear fractional differential equations with integral boundary conditions in Banach spaces, Opuscula Math., 32, pp. 31-40, (2012)
  • [10] Benchohra M., Nieto J.J., Seba D., Measure of noncompactness and hyperbolic partial fractional differential equations in Banach spaces, PanAmerican Math. J., 20, 3, pp. 27-37, (2010)