Torus Equivariant Szegő Kernel Asymptotics on Strongly Pseudoconvex CR Manifolds

被引:0
|
作者
Hendrik Herrmann
Chin-Yu Hsiao
Xiaoshan Li
机构
[1] University of Wuppertal,Faculty of Mathematics und Natural Sciences
[2] Institute of Mathematics,School of Mathematics and Statistics
[3] Academia Sinica and National Center for Theoretical Sciences,undefined
[4] Wuhan University,undefined
来源
Acta Mathematica Vietnamica | 2020年 / 45卷
关键词
Szegő kernels; Asymptotic expansion; CR functions; Strongly pseudoconvex CR manifolds; Sasakian manifolds; Primary 32V20; Secondary 32W10;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, T1,0X) be a compact strongly pseudoconvex CR manifold of dimension 2n + 1. Assume that a d-dimensional torus Td acts on X. In this work, we study the behavior of torus equivariant Szegő kernels and prove that the weighted torus equivariant Szegő kernels admit asymptotic expansions.
引用
收藏
页码:113 / 135
页数:22
相关论文
共 4 条
  • [1] Torus Equivariant Szego&x30b; Kernel Asymptotics on Strongly Pseudoconvex CR Manifolds
    Herrmann, Hendrik
    Hsiao, Chin-Yu
    Li, Xiaoshan
    ACTA MATHEMATICA VIETNAMICA, 2020, 45 (01) : 113 - 135
  • [2] Szego kernel asymptotic expansion on strongly pseudoconvex CR manifolds with S1 action
    Herrmann, Hendrik
    Hsiao, Chin-Yu
    Li, Xiaoshan
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (09)
  • [3] Equivariant asymptotics of Szego kernels under Hamiltonian U(2)-actions
    Galasso, Andrea
    Paoletti, Roberto
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (02) : 639 - 683
  • [4] Szego kernel, regular quantizations and spherical CR-structures
    Arezzo, Claudio
    Loi, Andrea
    Zuddas, Fabio
    MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (3-4) : 1207 - 1216