Dynamic Opial diamond-α integral inequalities involving the power of a function

被引:0
作者
Tatjana Z Mirković
机构
[1] College of Applied Professional Studies,
来源
Journal of Inequalities and Applications | / 2017卷
关键词
Opial-type inequality; time scale; 34N05; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present some new dynamic Opial-type diamond alpha inequalities on time scales. The obtained results are related to the function fk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f^{k}$\end{document}.
引用
收藏
相关论文
共 30 条
  • [1] Fayyaz T(2016)Generalized integral inequalities on time scales J. Inequal. Appl. 2016 49-56
  • [2] Irshad N(2005)Dynamic inequalities on time scales Int. J. Pure Appl. Math. Sci. 22 535-557
  • [3] Khan A(2001)Inequalities on time scales: a survey Math. Inequal. Appl. 4 3-22
  • [4] Rahman G(2012)Generalized diamond- Adv. Differ. Equ. 2012 1-26
  • [5] Roqia G(1999) dynamic Opial inequalities Results Math. 35 11-20
  • [6] Zhao Z(2002)Basic calculus on time scales and some of its applications J. Comput. Appl. Math. 141 1258-1261
  • [7] Xu B(2001)Dynamic equations on time scales: a survey Ann. Pol. Math. 77 85-103
  • [8] Li Y(2009)Opial inequalities on time scales Math. Comput. Model. 50 923-940
  • [9] Agarwal R(1995)Basics of diamond- J. Math. Anal. Appl. 189 undefined-undefined
  • [10] Bohner M(2015) partial dynamic calculus on time scales Math. Inequal. Appl. 18 undefined-undefined