The prediction of asymptomatic carotid atherosclerosis with electronic health records: a comparative study of six machine learning models

被引:0
作者
Jiaxin Fan
Mengying Chen
Jian Luo
Shusen Yang
Jinming Shi
Qingling Yao
Xiaodong Zhang
Shuang Du
Huiyang Qu
Yuxuan Cheng
Shuyin Ma
Meijuan Zhang
Xi Xu
Qian Wang
Shuqin Zhan
机构
[1] The Second Affiliated Hospital of Xi’an Jiaotong University,Department of Neurology
[2] Xi’an Jiaotong University,Faculty of Electronic and Information Engineering
[3] Xi’an Jiaotong University,School of Mathematics and Statistics
[4] The Second Affiliated Hospital of Xi’an Jiaotong University,Department of Health Management
来源
BMC Medical Informatics and Decision Making | / 21卷
关键词
Machine learning; Asymptomatic carotid atherosclerosis; Electronic health records; Prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[31]   Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry [J].
Gupta, Sunil ;
Truyen Tran ;
Luo, Wei ;
Dinh Phung ;
Kennedy, Richard Lee ;
Broad, Adam ;
Campbell, David ;
Kipp, David ;
Singh, Madhu ;
Khasraw, Mustafa ;
Matheson, Leigh ;
Ashley, David M. ;
Venkatesh, Svetha .
BMJ OPEN, 2014, 4 (03)
[32]   Machine Learning for an Enhanced Credit Risk Analysis: A Comparative Study of Loan Approval Prediction Models Integrating Mental Health Data [J].
Alagic, Adnan ;
Zivic, Natasa ;
Kadusic, Esad ;
Hamzic, Dzenan ;
Hadzajlic, Narcisa ;
Dizdarevic, Mejra ;
Selmanovic, Elmedin .
MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2024, 6 (01) :53-77
[33]   Prediction of acute and chronic kidney diseases during the post-covid-19 pandemic with machine learning models: utilizing national electronic health records in the US [J].
Zhang, Yue ;
Ghahramani, Nasrollah ;
Li, Runjia ;
Chinchilli, Vernon M. ;
Ba, Djibril M. .
EBIOMEDICINE, 2025, 115
[34]   Machine Learning-Based Asthma Attack Prediction Models From Routinely Collected Electronic Health Records: Systematic Scoping Review [J].
Budiarto, Arif ;
Tsang, Kevin C. H. ;
Wilson, Andrew M. ;
Sheikh, Aziz ;
Shah, Syed Ahmar .
JMIR AI, 2023, 2
[35]   Comparative Study of Machine Learning and Deep Learning Models for Early Prediction of Ovarian Cancer [J].
Dhingra, Hardik ;
Shetty, Roopashri .
IEEE ACCESS, 2025, 13 :87336-87349
[36]   Readmission prediction using deep learning on electronic health records [J].
Ashfaq, Awais ;
Sant'Anna, Anita ;
Lingman, Markus ;
Nowaczyk, Slawomir .
JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 97
[37]   Novel electronic health records applied for prediction of pre-eclampsia: Machine-learning algorithms [J].
Li, Yi-xin ;
Shen, Xiao-ping ;
Yang, Chao ;
Cao, Zuo-zeng ;
Du, Rui ;
Yu, Min-da ;
Wang, Jun-ping ;
Wang, Mei .
PREGNANCY HYPERTENSION-AN INTERNATIONAL JOURNAL OF WOMENS CARDIOVASCULAR HEALTH, 2021, 26 :102-109
[38]   Machine Learning-Based Early Prediction of Sepsis Using Electronic Health Records: A Systematic Review [J].
Islam, Khandaker Reajul ;
Prithula, Johayra ;
Kumar, Jaya ;
Tan, Toh Leong ;
Reaz, Mamun Bin Ibne ;
Sumon, Md. Shaheenur Islam ;
Chowdhury, Muhammad E. H. .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (17)
[39]   Improving cardiovascular risk prediction through machine learning modelling of irregularly repeated electronic health records [J].
Li, Chaiquan ;
Liu, Xiaofei ;
Shen, Peng ;
Sun, Yexiang ;
Zhou, Tianjing ;
Chen, Weiye ;
Chen, Qi ;
Lin, Hongbo ;
Tang, Xun ;
Gao, Pei .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (01) :30-40
[40]   Evaluation of machine learning strategies for imaging confirmed prostate cancer recurrence prediction on electronic health records [J].
Beinecke, Jacqueline Michelle ;
Anders, Patrick ;
Schurrat, Tino ;
Heider, Dominik ;
Luster, Markus ;
Librizzi, Damiano ;
Hauschild, Anne-Christin .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 143