Effectiveness of flow obstructions in enhancing electro-osmotic flow

被引:0
|
作者
S. Di Fraia
N. Massarotti
P. Nithiarasu
机构
[1] University of Naples ‘Parthenope’,Department of Engineering
[2] Swansea University,Biomedical Engineering and Rheology Group, Zienkiewicz Centre for Computational Engineering
来源
关键词
Microchannels; Flow obstructions; Flow enhancement; Width effect; Numerical modelling;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the influence of obstructions on microchannel electro-osmotic flow is investigated for the first time. To carry out such a study, regular obstructions are introduced into microchannels and flow rates are numerically calculated. The effect of channel width on flow rates is analysed on both free and obstructed channels. The solid material considered for channel walls and obstructions is silicon, and the electrolyte is deionised water. The parameters studied include channel width, obstruction size and effective porosity of the channel. The effective porosity is varied between 0.4 and 0.8 depending on other chosen parameters. The results clearly demonstrate that, under the analysed conditions, introduction of obstructions into channels wider than 100μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\,\upmu \hbox {m}$$\end{document} enhances the flow rate induced by electro-osmosis.
引用
收藏
相关论文
共 50 条
  • [11] Suppression of Electro-Osmotic Flow by Surface Roughness
    Messinger, R. J.
    Squires, T. M.
    PHYSICAL REVIEW LETTERS, 2010, 105 (14)
  • [12] Study of electro-osmotic flow in microfluldic devices
    Sabur, Romena
    Matin, M. A.
    2006 3RD IEEE/EMBS INTERNATIONAL SUMMER SCHOOL ON MEDICAL DEVICES AND BIOSENSORS, 2006, : 126 - +
  • [13] Electro-osmotic flow of semidilute polyelectrolyte solutions
    Uematsu, Yuki
    Araki, Takeaki
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (09):
  • [14] Electro-osmotic nanofluid flow in a curved microchannel
    Narla, V. K.
    Tripathi, Dharmendra
    Beg, O. Anwar
    CHINESE JOURNAL OF PHYSICS, 2020, 67 : 544 - 558
  • [15] ELECTRO-OSMOTIC FLOW WITH FREE SURFACE IN NANOCHANNELS
    Joo, Sang W.
    Qian, Shizhi
    Jiang, Yingtao
    Cheney, Marcos A.
    MICRONANO2008-2ND INTERNATIONAL CONFERENCE ON INTEGRATION AND COMMERCIALIZATION OF MICRO AND NANOSYSTEMS, PROCEEDINGS, 2008, : 543 - 547
  • [16] Ionic Origin of Electro-osmotic Flow Hysteresis
    Chun Yee Lim
    An Eng Lim
    Yee Cheong Lam
    Scientific Reports, 6
  • [17] Charge inversion and flow reversal in a nanochannel electro-osmotic flow
    Qiao, R
    Aluru, NR
    PHYSICAL REVIEW LETTERS, 2004, 92 (19) : 198301 - 1
  • [18] Characterizing Electro-osmotic Flow in Parylene Microchannels
    Freire, Sergio L. S.
    Yang, Hao
    Luk, Vivienne N.
    O'Brien, Brendan
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2011, 50 (09) : 931 - 936
  • [19] Ionic Origin of Electro-osmotic Flow Hysteresis
    Lim, Chun Yee
    Lim, An Eng
    Lam, Yee Cheong
    SCIENTIFIC REPORTS, 2016, 6
  • [20] Mechanism of electro-osmotic flow in soils.
    Chang, JH
    Qiang, Z
    Huang, CP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U1085 - U1085