Effectiveness of flow obstructions in enhancing electro-osmotic flow

被引:0
|
作者
S. Di Fraia
N. Massarotti
P. Nithiarasu
机构
[1] University of Naples ‘Parthenope’,Department of Engineering
[2] Swansea University,Biomedical Engineering and Rheology Group, Zienkiewicz Centre for Computational Engineering
来源
关键词
Microchannels; Flow obstructions; Flow enhancement; Width effect; Numerical modelling;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the influence of obstructions on microchannel electro-osmotic flow is investigated for the first time. To carry out such a study, regular obstructions are introduced into microchannels and flow rates are numerically calculated. The effect of channel width on flow rates is analysed on both free and obstructed channels. The solid material considered for channel walls and obstructions is silicon, and the electrolyte is deionised water. The parameters studied include channel width, obstruction size and effective porosity of the channel. The effective porosity is varied between 0.4 and 0.8 depending on other chosen parameters. The results clearly demonstrate that, under the analysed conditions, introduction of obstructions into channels wider than 100μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\,\upmu \hbox {m}$$\end{document} enhances the flow rate induced by electro-osmosis.
引用
收藏
相关论文
共 50 条
  • [1] Effectiveness of flow obstructions in enhancing electro-osmotic flow
    Di Fraia, S.
    Massarotti, N.
    Nithiarasu, P.
    MICROFLUIDICS AND NANOFLUIDICS, 2017, 21 (03)
  • [2] ELECTRO-OSMOTIC FLOW MEASUREMENTS
    MIYAMOTO, M
    NAKAHARI, T
    YOSHIDA, H
    IMAI, Y
    JOURNAL OF MEMBRANE SCIENCE, 1989, 41 : 377 - 391
  • [3] Electro-osmotic flow measurements
    Miyamoto, Manabu, 1600, (41):
  • [4] Electro-osmotic flow in microchannels
    Arnold, A. K.
    Nithiarasu, P.
    Eng, P. F.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2008, 222 (05) : 753 - 759
  • [5] Electro-osmotic flow through a nanopore
    Mao, M.
    Sherwood, J. D.
    Ghosal, S.
    JOURNAL OF FLUID MECHANICS, 2014, 749 : 167 - 183
  • [6] Electro-osmotic flow of a model electrolyte
    Zhu, W
    Singer, SJ
    Zheng, Z
    Conlisk, AT
    PHYSICAL REVIEW E, 2005, 71 (04):
  • [7] Electro-osmotic flow in polygonal ducts
    Wang, Chang-Yi
    Chang, Chien-Cheng
    ELECTROPHORESIS, 2011, 32 (11) : 1268 - 1272
  • [8] TRANSPORT EQUATION FOR ELECTRO-OSMOTIC FLOW
    SINGH, K
    SINGH, SN
    INDIAN JOURNAL OF CHEMISTRY, 1969, 7 (11): : 1159 - &
  • [9] Electro-osmotic flow in hydrophobic nanochannels
    Silkina, Elena F.
    Asmolov, Evgeny S.
    Vinogradova, Olga I.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (41) : 23036 - 23043
  • [10] Electro-osmotic flow in a sector microchannel
    Chang, Chien C.
    Wang, Chang-Yi
    PHYSICS OF FLUIDS, 2009, 21 (04)