Extension of the Lie Transform Theory Depending on a Small Parameter for Multi-parametric Dynamical Systems

被引:0
|
作者
F. A. Abd El-Salam
机构
[1] Taibah University,Department of Mathematics, Faculty of Science
[2] Cairo University,Department of Astronomy, Faculty of Science
关键词
Lie transform; -small parameters; Generating function; Canonical perturbations; Multi-parametric dynamical systems;
D O I
暂无
中图分类号
学科分类号
摘要
Lie transform method derived by Deprit and Hori in the 1960s allowed researchers to solve the perturbation problems depending on a small parameter. But actually the real systems are very complicated. In the astrodynamics, one usually encounters problems involving several perturbations which in turn yields dynamical system with several small parameters, e.g., oblateness of the massive objects, radiation pressure, mass loss, relativistic effects, drag perturbations, etc. To involve as many perturbations as the system requires, the theory of canonical Lie transform depending on a small parameter is extended to N-small parameters. Lie transform based on one small parameter is briefly surveyed. Some useful lemmas are proved. Then, the generalized Lie transformation method is developed.
引用
收藏
页码:169 / 178
页数:9
相关论文
共 50 条
  • [1] Extension of the Lie Transform Theory Depending on a Small Parameter for Multi-parametric Dynamical Systems
    Abd El-Salam, F. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A1): : 169 - 178
  • [2] MULTI-PARAMETRIC SYSTEM OF OPERATORS NONLINEARLY DEPENDING ON SPECTRAL PARAMETER
    ALLAKHVERDIEV, DE
    DZHABARZADE, RM
    DOKLADY AKADEMII NAUK SSSR, 1988, 299 (06): : 1289 - 1291
  • [3] A multi-parametric recursive continuation method for nonlinear dynamical systems
    Grenat, C.
    Baguet, S.
    Lamarque, C-H.
    Dufour, R.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 127 : 276 - 289
  • [4] Explicit/Multi-Parametric Model Predictive Control of Dissipative Distributed Parameter Systems
    Liu, Liu
    Huang, Biao
    Dubljevic, Stevan
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 2625 - 2630
  • [5] Multi-parametric mittag-leffler functions and their extension
    Kilbas, Anatoly A.
    Koroleva, Anna A.
    Rogosin, Sergei V.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (02) : 378 - 404
  • [6] Multi-parametric mittag-leffler functions and their extension
    Anatoly A. Kilbas
    Anna A. Koroleva
    Sergei V. Rogosin
    Fractional Calculus and Applied Analysis, 2013, 16 : 378 - 404
  • [7] Multi-parametric control and optimisation of a small scale CHP
    Konstantinidis, Dimitrios
    Varbanov, Petar
    Klemes, Jiri
    PRES 2010: 13TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2010, 21 : 151 - 156
  • [8] From multi-parametric programming theory to MPC-on-a-chip multi-scale systems applications
    Pistikopoulos, Efstratios N.
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 47 : 57 - 66
  • [9] Stabilisation of constrained uncertain systems by multi-parametric optimisation
    Bey, Wissal
    Kardous, Zohra
    Braiek, Naceur Benhadj
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2016, 10 (04) : 407 - 416
  • [10] Practical stability for systems depending on a small parameter
    Universiteit Gent, Gent, Belgium
    Proc IEEE Conf Decis Control, (1428-1433):