Annihilators in Normal Autometrized Algebras

被引:0
作者
Ivan Chajda
Jiri Rachunek
机构
[1] Palacky University,Dept. of Algebra and Geometry
来源
Czechoslovak Mathematical Journal | 2001年 / 51卷
关键词
autometrized algebra; annihilator; relative annihilator; ideal; polar;
D O I
暂无
中图分类号
学科分类号
摘要
The concepts of an annihilator and a relative annihilator in an autometrized l-algebra are introduced. It is shown that every relative annihilator in a normal autometrized l-algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} is an ideal of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} and every principal ideal of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} is an annihilator of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document}. The set of all annihilators of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} forms a complete lattice. The concept of an I-polar is introduced for every ideal I of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document}. The set of all I-polars is a complete lattice which becomes a two-element chain provided I is prime. The I-polars are characterized as pseudocomplements in the lattice of all ideals of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} containing I.
引用
收藏
页码:111 / 120
页数:9
相关论文
共 8 条
  • [1] Chajda I.(1995)Indexed annihilators in lattices Arch. Math. (Brno) 31 259-262
  • [2] Hansen M. E.(1994)Minimal prime ideals in autometrized algebras Czechoslovak Math. J. 44 81-90
  • [3] Mandelker M.(1979)Relative annihilators in lattices Duke Math. J. 49 377-386
  • [4] Rachůnek J.(1987)Prime ideals in autometrized algebras Czechoslovak Math. J. 37 65-69
  • [5] Rachůnek J.(1989)Polars in autometrized algebras Czechoslovak Math. J. 39 681-685
  • [6] Swamy K. L. N.(1964)A general theory of autometrized algebras Math. Ann. 157 65-74
  • [7] Swamy K. L. N.(1977)Ideals in autometrized algebras J. Austral. Math. Soc. 24 362-374
  • [8] Rao N. P.(undefined)undefined undefined undefined undefined-undefined