Integrability and Lie symmetry analysis of deformed N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{N}}$$\end{document}-coupled nonlinear Schrödinger equations

被引:0
|
作者
S. Suresh Kumar
S. Balakrishnan
R. Sahadevan
机构
[1] C. Abdul Hakeem College (Autonomous),Department of Mathematics
[2] Islamiah College (Autonomous),Department of Mathematics
[3] University of Madras,Ramanujan Institute for Advanced Study in Mathematics
关键词
Lax pair; Lie point symmetries; Integrability; Deformed coupled nonlinear Schrödinger equations;
D O I
10.1007/s11071-017-3837-y
中图分类号
学科分类号
摘要
A systematic investigation to derive the Lax pair and group theoretical properties of deformed N-coupled nonlinear Schrödinger equations (N-coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N =1$$\end{document} and N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N = 2$$\end{document} are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible.
引用
收藏
页码:2783 / 2795
页数:12
相关论文
共 32 条