Exact Holography and Black Hole Entropy in N=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=8 $$\end{document} and N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} String Theory

被引:0
作者
João Gomes
机构
[1] University of Amsterdam,Institute of Physics
[2] University of Utrecht,Institute for Theoretical Physics
关键词
AdS-CFT Correspondence; Black Holes in String Theory; Chern-Simons Theories; Supergravity Models;
D O I
10.1007/JHEP07(2017)022
中图分类号
学科分类号
摘要
We compute the exact entropy of one-eighth and one-quarter BPS black holes in N=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=8 $$\end{document} and N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} string theory respectively. This includes all the N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} CHL models in both K3 and T4 compactifications. The main result is a measure for the finite dimensional integral that one obtains after localization of supergravity on AdS2× S2. This measure is determined entirely by an anomaly in supersymmetric Chern-Simons theory on local AdS3 and takes into account the contribution from all the supergravity multiplets. In Chern-Simons theory on compact manifolds, this is the anomaly that computes a certain one-loop dependence on the volume of the manifold. For one-eighth BPS black holes, our results are a first principles derivation of a measure proposed in arXiv:1111.1161, while in the case of one-quarter BPS black holes our result computes exactly all the perturbative or area corrections. Moreover, we argue that instantonic contributions can be incorporated and give evidence by computing the measure, which matches precisely the microscopics. Along with this, we find a unitary condition that truncates the answer to a finite sum of instantons in perfect agreement with a microscopic formula. Our results therefore solve a number of puzzles related to localization in supergravity and constitute a larger number of examples where holography can be shown to hold exactly.
引用
收藏
相关论文
共 113 条
[1]  
Sen A(2009)Quantum entropy function from AdS Int. J. Mod. Phys. A 24 4225-undefined
[2]  
Dabholkar A(2013)/CF T JHEP 04 062-undefined
[3]  
Gomes J(2011) correspondence JHEP 06 019-undefined
[4]  
Murthy S(2015)Localization & exact holography JHEP 03 074-undefined
[5]  
Dabholkar A(2009)Quantum black holes, localization and the topological string JHEP 08 068-undefined
[6]  
Gomes J(2011)Nonperturbative black hole entropy and Kloosterman sums JHEP 04 034-undefined
[7]  
Murthy S(1997)Arithmetic of quantum entropy function Nucl. Phys. B 484 543-undefined
[8]  
Dabholkar A(2008)Supersymmetric index from black hole entropy JHEP 08 037-undefined
[9]  
Gomes J(2010)Counting dyons in N = 4 string theory JHEP 02 091-undefined
[10]  
Murthy S(2015)U-duality invariant dyon spectrum in type-II on T JHEP 12 028-undefined