Multi-scale joint network based on Retinex theory for low-light enhancement

被引:1
|
作者
Xijuan Song
Jijiang Huang
Jianzhong Cao
Dawei Song
机构
[1] Chinese Academy of Sciences,Xi’an Institute of Optics and Precision Mechanics
[2] University of Chinese Academy of Sciences,undefined
来源
关键词
Low-light image enhancement; Multi-scale joint network; Color loss; Retinex theory;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the limitations of devices, images taken in low-light environments are of low contrast and high noise without any manual intervention. Such images will affect the visual experience and hinder further visual processing tasks, such as target detection and target tracking. To alleviate this issue, we propose a multi-scale joint low-light enhancement network based on the Retinex theory. The network consists of a decomposition part and an enhancement part. As a joint network, the decomposition and enhancement parts are mutually constrained, and the parameters are updated at the same time so that the image processing results are more excellent in detail. Our algorithm avoids the separation and recombination of decomposition and enhancement. Therefore, less information is lost in the processing of low-light images, and the enhancement result of the proposed algorithm is very close to the ground truth. In addition, in the enhancement part, we adopt a multi-scale network to fully extract image features. The multi-scale network maintains a balance between the global and local luminance of the illumination image. Retinex theory can effectively solve the problem of noise amplification and color distortion. At the same time, we have added color loss to solve the problem of color distortion, so that the enhancement result is closer to the normal-light image in color. The enhancement results are intuitively excellent, and the peak signal-to-noise ratio and structural similarity index results also reflect the reliability of the algorithm.
引用
收藏
页码:1257 / 1264
页数:7
相关论文
共 50 条
  • [31] Multi-scale adaptive low-light image enhancement based on deep learning
    Cao, Taotao
    Peng, Taile
    Wang, Hao
    Zhu, Xiaotong
    Guo, Jia
    Zhang, Zhen
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (04)
  • [32] A deep Retinex network for underwater low-light image enhancement
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [33] Low-Light Image Enhancement Algorithm Based on Deep Learning and Retinex Theory
    Lei, Chenyu
    Tian, Qichuan
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [34] Retinex-based Low-Light Image Enhancement
    Luo, Rui
    Feng, Yan
    He, Mingxin
    Zhang, Yuliang
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1429 - 1434
  • [35] Improved Retinex-Theory-Based Low-Light Image Enhancement Algorithm
    Wang, Jiarui
    Wang, Hanjia
    Sun, Yu
    Yang, Jie
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [36] The Modified Unsupervised Low-Light Image Enhancement Approach Based on the Retinex Theory
    Zhang, Yingchun
    Jiang, Shan
    Liu, Xuan
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 431 - 436
  • [37] Dual Autoencoder Network for Retinex-Based Low-Light Image Enhancement
    Park, Seonhee
    Yu, Soohwan
    Kim, Minseo
    Park, Kwanwoo
    Paik, Joonki
    IEEE ACCESS, 2018, 6 : 22084 - 22093
  • [38] A deep Retinex network for underwater low-light image enhancement
    Kai Ji
    Weimin Lei
    Wei Zhang
    Machine Vision and Applications, 2023, 34
  • [39] An Improved Multi-Scale Image Enhancement Method Based on Retinex Theory
    Yao, Li
    Lin, Ya
    Muhammad, Sohail
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (01) : 122 - 126
  • [40] PMSNet: Parallel Multi-Scale Network for Accurate Low-Light Light-Field Image Enhancement
    Wang, Xingzheng
    Chen, Kaiqiang
    Wang, Zixuan
    Huang, Wenhao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2041 - 2055