On inner automorphisms and certain central automorphisms of groups

被引:0
作者
Zahedeh Azhdari
Mehri Akhavan-Malayeri
机构
[1] Alzahra University,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2014年 / 45卷
关键词
Inner automorphism; central automorphism; finitely generated group;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a group, let M and N be two normal subgroups of G. We denote by AutNM (G), the set of all automorphisms of G which centralize G/M and N. In this paper we investigate the structure of a group G in which one of the Inn(G) = AutNM (G), AutNM(G) ≤ Inn(G) or Inn(G) ≤ AutNM(G) holds. We also discuss the problem: “what conditions on G is sufficient to ensure that G has a non-inner automorphism which centralizes G/M and N”.
引用
收藏
页码:377 / 394
页数:17
相关论文
共 17 条
  • [1] Adney J E(1965)Automorphisms of a Illinois J. Math. 9 137-143
  • [2] Yen T(2011)-group J. Algebra Appl. 10 1283-1290
  • [3] Azhdari Z(2013)On inner automorphisms and central automorphisms of Nilpotent Group of Class 2 Southeast Asian Bull. Math. 37 15-22
  • [4] Akhavan-Malayeri M(2001)Some new results on central automorphisms of infinite groups Comm. Algebra 29 2081-2087
  • [5] Azhdari Z(2004)Central automorphisms that are almost inner Mathematical Proceedings of the Royal Irish Academy 104A 223-229
  • [6] Akhavan-Malayeri M(2002)Finite groups with central automorphism group of minimal order J. Algebra 250 283-287
  • [7] Curran M J(1966)Noninner automorphisms of order p of finite J. Algebra 4 12-275
  • [8] McCaughan D J(1965)-groups J. London Math. Soc. 40 268-297
  • [9] Curran M J(2007)Nichtabelsche Arch. Math. 89 296-403
  • [10] Deaconescu M(2009)-Gruppen besitzen ussere Arch. Math. 93 399-4331