On inverse mean curvature flow in Schwarzschild space and Kottler space

被引:1
|
作者
Haizhong Li
Yong Wei
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Australia National University,Mathematical Sciences Institute
关键词
53C44; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first study the behavior of inverse mean curvature flow in Schwarzschild manifold. We show that if the initial hypersurface Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is strictly mean convex and star-shaped, then the flow hypersurface Σt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma _t$$\end{document} converges to a large coordinate sphere as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document} exponentially. We also describe an application of this convergence result. In the second part of this paper, we will analyse the inverse mean curvature flow in Kottler–Schwarzschild manifold. By deriving a lower bound for the mean curvature on the flow hypersurface independently of the initial mean curvature, we can use an approximation argument to show the global existence and regularity of the smooth inverse mean curvature flow for star-shaped and weakly mean convex initial hypersurface, which generalizes Huisken–Ilmanen’s (J Differ Geom 80:433–451, 2008) result.
引用
收藏
相关论文
共 50 条
  • [21] Flow by mean curvature inside a moving ambient space
    Magni, Annibale
    Mantegazza, Carlo
    Tsatis, Efstratios
    JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (03) : 561 - 576
  • [22] Flow by mean curvature inside a moving ambient space
    Annibale Magni
    Carlo Mantegazza
    Efstratios Tsatis
    Journal of Evolution Equations, 2013, 13 : 561 - 576
  • [23] CONSTANT-MEAN-CURVATURE SLICING OF THE SCHWARZSCHILD-DESITTER SPACE-TIME
    NAKAO, K
    MAEDA, K
    NAKAMURA, T
    OOHARA, K
    PHYSICAL REVIEW D, 1991, 44 (04): : 1326 - 1329
  • [24] Inverse mean curvature flows in the hyperbolic 3-space revisited
    Pei-Ken Hung
    Mu-Tao Wang
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 119 - 126
  • [25] Inverse mean curvature flows in the hyperbolic 3-space revisited
    Hung, Pei-Ken
    Wang, Mu-Tao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 119 - 126
  • [26] On an inverse curvature flow in two-dimensional space forms
    Kwok-Kun Kwong
    Yong Wei
    Glen Wheeler
    Valentina-Mira Wheeler
    Mathematische Annalen, 2022, 384 : 1 - 24
  • [27] On an inverse curvature flow in two-dimensional space forms
    Kwong, Kwok-Kun
    Wei, Yong
    Wheeler, Glen
    Wheeler, Valentina-Mira
    MATHEMATISCHE ANNALEN, 2022, 384 (1-2) : 285 - 308
  • [28] THE VOLUME-PRESERVING MEAN CURVATURE FLOW IN EUCLIDEAN SPACE
    Li, Haozhao
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 243 (02) : 331 - 355
  • [29] Mean Curvature Flow with Triple Junctions in Higher Space Dimensions
    Daniel Depner
    Harald Garcke
    Yoshihito Kohsaka
    Archive for Rational Mechanics and Analysis, 2014, 211 : 301 - 334
  • [30] Mean Curvature Flow with Triple Junctions in Higher Space Dimensions
    Depner, Daniel
    Garcke, Harald
    Kohsaka, Yoshihito
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (01) : 301 - 334