On inverse mean curvature flow in Schwarzschild space and Kottler space

被引:1
|
作者
Haizhong Li
Yong Wei
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Australia National University,Mathematical Sciences Institute
关键词
53C44; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first study the behavior of inverse mean curvature flow in Schwarzschild manifold. We show that if the initial hypersurface Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is strictly mean convex and star-shaped, then the flow hypersurface Σt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma _t$$\end{document} converges to a large coordinate sphere as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document} exponentially. We also describe an application of this convergence result. In the second part of this paper, we will analyse the inverse mean curvature flow in Kottler–Schwarzschild manifold. By deriving a lower bound for the mean curvature on the flow hypersurface independently of the initial mean curvature, we can use an approximation argument to show the global existence and regularity of the smooth inverse mean curvature flow for star-shaped and weakly mean convex initial hypersurface, which generalizes Huisken–Ilmanen’s (J Differ Geom 80:433–451, 2008) result.
引用
收藏
相关论文
共 50 条