In this paper, we first study the behavior of inverse mean curvature flow in Schwarzschild manifold. We show that if the initial hypersurface Σ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Sigma $$\end{document} is strictly mean convex and star-shaped, then the flow hypersurface Σt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Sigma _t$$\end{document} converges to a large coordinate sphere as t→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t\rightarrow \infty $$\end{document} exponentially. We also describe an application of this convergence result. In the second part of this paper, we will analyse the inverse mean curvature flow in Kottler–Schwarzschild manifold. By deriving a lower bound for the mean curvature on the flow hypersurface independently of the initial mean curvature, we can use an approximation argument to show the global existence and regularity of the smooth inverse mean curvature flow for star-shaped and weakly mean convex initial hypersurface, which generalizes Huisken–Ilmanen’s (J Differ Geom 80:433–451, 2008) result.
机构:
Univ Grenoble Alpes, Inst Fourier, BP 74, F-38402 St Martin Dheres, FranceUniv Grenoble Alpes, Inst Fourier, BP 74, F-38402 St Martin Dheres, France
Pipoli, Giuseppe
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE,
2019,
52
(05):
: 1107
-
1135
机构:
Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R ChinaHubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
Chen, Li
Guo, Xi
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R ChinaHubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
Guo, Xi
Tu, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R ChinaHubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
机构:
POSTECH, Dept Math, Pohang, Gyeongbuk, South Korea
Korea Inst Adv Study, Seoul 02455, South KoreaPOSTECH, Dept Math, Pohang, Gyeongbuk, South Korea