Deep convolutional neural networks with transfer learning for automated brain image classification

被引:0
|
作者
Taranjit Kaur
Tapan Kumar Gandhi
机构
[1] Indian Institute of Technology,Department of Electrical Engineering
[2] Delhi,undefined
来源
关键词
Transfer learning; Overfit; Classification; MR images;
D O I
暂无
中图分类号
学科分类号
摘要
MR brain image categorization has been an active research domain from the last decade. Several techniques have been devised in the past for MR image categorization, starting from classical to the deep learning methods like convolutional neural networks (CNNs). Classical machine learning methods need handcrafted features to perform classification. The CNNs, on the other hand, perform classification by extracting image features directly from raw images via tuning the parameters of the convolutional and pooling layer. The features extracted by CNN strongly depend on the size of the training dataset. If the training dataset is small, CNN tends to overfit after several epochs. So, deep CNNs (DCNNs) with transfer learning have evolved. The prime objective of the present work is to explore the capability of different pre-trained DCNN models with transfer learning for pathological brain image classification. Various pre-trained DCNNs, namely Alexnet, Resnet50, GoogLeNet, VGG-16, Resnet101, VGG-19, Inceptionv3, and InceptionResNetV2, were used in the present study. The last few layers of these models were replaced to accommodate new image categories for our application. These models were extensively evaluated on data from Harvard, clinical, and benchmark Figshare repository. The dataset was then partitioned in the ratio 60:40 for training and testing. The validation on the test set reveals that the pre-trained Alexnet with transfer learning exhibited the best performance in less time compared to other proposed models. The proposed method is more generic as it does not need any handcrafted features and can achieve an accuracy value of 100%, 94%, and 95.92% for three datasets. Other performance measures used in the study include sensitivity, specificity, precision, false positive rate, error, F-score, Mathew correlation coefficient, and area under the curve. The results are compared with both the traditional machine learning methods and those using CNN.
引用
收藏
相关论文
共 50 条
  • [41] Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
    Almutairi, Abdullah
    He, Pan
    Rangarajan, Anand
    Ranka, Sanjay
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2022, 20 (02) : 483 - 494
  • [42] Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
    Abdullah Almutairi
    Pan He
    Anand Rangarajan
    Sanjay Ranka
    International Journal of Intelligent Transportation Systems Research, 2022, 20 : 483 - 494
  • [43] Automated Sperm Head Morphology Classification with Deep Convolutional Neural Networks
    Calijorne Soares, Marco Antonio
    Mourao Falci, Daniel Henrique
    Alves Farnezi, Marco Flavio
    Moreira Farnezi, Hana Carolina
    Parreiras, Fernando Silva
    Boechat Gomide, Joao Victor
    2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, : 270 - 275
  • [44] Automated bat call classification using deep convolutional neural networks
    Schwab, E.
    Pogrebnoj, S.
    Freund, M.
    Flossmann, F.
    Vogl, S.
    Frommolt, K-H
    BIOACOUSTICS-THE INTERNATIONAL JOURNAL OF ANIMAL SOUND AND ITS RECORDING, 2023, 32 (01): : 1 - 16
  • [45] Deep learning image-based automated application on classification of tomato leaf disease by pre-trained deep convolutional neural networks
    Madupuri, ReddyPriya
    Vemula, Dinesh Reddy
    Chettupally, Anil Carie
    Sangi, Abdur Rashid
    Ravi, Pallam
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2023, 42 (03) : 52 - 58
  • [46] Image Classification Based on transfer Learning of Convolutional neural network
    Wang, Yunyan
    Wang, Chongyang
    Luo, Lengkun
    Zhou, Zhigang
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7506 - 7510
  • [47] Brain CT Image Classification with Deep Neural Networks
    Da, Cheng
    Zhang, Haixian
    Sang, Yongsheng
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 653 - 662
  • [48] Automated digital holographic image reconstruction with deep convolutional neural networks
    Moon, Inkyu
    Jaferzadeh, Keyvan
    THREE-DIMENSIONAL IMAGING, VISUALIZATION, AND DISPLAY 2020, 2020, 11402
  • [49] Learning Sparse Features in Convolutional Neural Networks for Image Classification
    Luo, Wei
    Li, Jun
    Xu, Wei
    Yang, Jian
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: IMAGE AND VIDEO DATA ENGINEERING, ISCIDE 2015, PT I, 2015, 9242 : 29 - 38
  • [50] Automated Optimal Architecture of Deep Convolutional Neural Networks for Image Recognition
    Albelwi, Saleh
    Mahmood, Ausif
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 53 - 60