Deep convolutional neural networks with transfer learning for automated brain image classification

被引:0
|
作者
Taranjit Kaur
Tapan Kumar Gandhi
机构
[1] Indian Institute of Technology,Department of Electrical Engineering
[2] Delhi,undefined
来源
关键词
Transfer learning; Overfit; Classification; MR images;
D O I
暂无
中图分类号
学科分类号
摘要
MR brain image categorization has been an active research domain from the last decade. Several techniques have been devised in the past for MR image categorization, starting from classical to the deep learning methods like convolutional neural networks (CNNs). Classical machine learning methods need handcrafted features to perform classification. The CNNs, on the other hand, perform classification by extracting image features directly from raw images via tuning the parameters of the convolutional and pooling layer. The features extracted by CNN strongly depend on the size of the training dataset. If the training dataset is small, CNN tends to overfit after several epochs. So, deep CNNs (DCNNs) with transfer learning have evolved. The prime objective of the present work is to explore the capability of different pre-trained DCNN models with transfer learning for pathological brain image classification. Various pre-trained DCNNs, namely Alexnet, Resnet50, GoogLeNet, VGG-16, Resnet101, VGG-19, Inceptionv3, and InceptionResNetV2, were used in the present study. The last few layers of these models were replaced to accommodate new image categories for our application. These models were extensively evaluated on data from Harvard, clinical, and benchmark Figshare repository. The dataset was then partitioned in the ratio 60:40 for training and testing. The validation on the test set reveals that the pre-trained Alexnet with transfer learning exhibited the best performance in less time compared to other proposed models. The proposed method is more generic as it does not need any handcrafted features and can achieve an accuracy value of 100%, 94%, and 95.92% for three datasets. Other performance measures used in the study include sensitivity, specificity, precision, false positive rate, error, F-score, Mathew correlation coefficient, and area under the curve. The results are compared with both the traditional machine learning methods and those using CNN.
引用
收藏
相关论文
共 50 条
  • [1] Deep convolutional neural networks with transfer learning for automated brain image classification
    Kaur, Taranjit
    Gandhi, Tapan Kumar
    MACHINE VISION AND APPLICATIONS, 2020, 31 (03)
  • [2] Deep Convolutional Neural Networks With Transfer Learning for Automobile Damage Image Classification
    Tian, Xiaoguang
    Han, Henry
    JOURNAL OF DATABASE MANAGEMENT, 2022, 33 (03)
  • [3] Balanced Medical Image Classification with Transfer Learning and Convolutional Neural Networks
    Benavente, David
    Gatica, Gustavo
    Gonzalez-Feliu, Jesus
    AXIOMS, 2022, 11 (03)
  • [4] A Transfer Learning Evaluation of Deep Neural Networks for Image Classification
    Abou Baker, Nermeen
    Zengeler, Nico
    Handmann, Uwe
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2022, 4 (01): : 22 - 41
  • [5] Deep convolutional recurrent neural network with transfer learning for hyperspectral image classification
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Wan, Gang
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (02)
  • [6] Transfer learning with deep convolutional neural network for constitution classification with face image
    Er-Yang Huan
    Gui-Hua Wen
    Multimedia Tools and Applications, 2020, 79 : 11905 - 11919
  • [7] Transfer learning with deep convolutional neural network for constitution classification with face image
    Huan, Er-Yang
    Wen, Gui-Hua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (17-18) : 11905 - 11919
  • [8] Celiac Disease Deep Learning Image Classification Using Convolutional Neural Networks
    Carreras, Joaquim
    JOURNAL OF IMAGING, 2024, 10 (08)
  • [9] Deep learning of human posture image classification using convolutional neural networks
    Rababaah, Aaron Rasheed
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2022, 15 (03) : 273 - 288
  • [10] Histopathological Image Classification with Deep Convolutional Neural Networks
    Alom, Md Zahangir
    Aspiras, Theus
    Taha, Tarek M.
    Asari, Vijayan K.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139