Solution to a Two-Dimensional Nonlinear Parabolic Heat Equation Subject to a Boundary Condition Specified on a Moving Manifold

被引:0
作者
A. L. Kazakov
O. A. Nefedova
L. F. Spevak
机构
[1] Matrosov Institute for System Dynamics and Control Theory,
[2] Siberian Branch of the Russian Academy of Sciences,undefined
[3] Institute of Engineering Science,undefined
[4] Ural Branch of the Russian Academy of Sciences,undefined
来源
Computational Mathematics and Mathematical Physics | 2024年 / 64卷
关键词
nonlinear parabolic heat conduction equation; degeneracy; existence and uniqueness theorem; exact solution; numerical solution; boundary element method; collocation method; radial basis functions;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:266 / 284
页数:18
相关论文
共 27 条
[1]  
Khankhasaev V. N.(2018)“On some applications of the hyperbolic heat equation and the methods for solving it,” Mat. Zametki Severo-Vostochn Fed. Univ. 25 98-111
[2]  
Darmakheev E. V.(1952)Analytical solutions for nonlinear convection–diffusion equations with nonlinear sources Prikl. Mat. Mekh. 16 67-78
[3]  
Barenblatt G. I.(2017)“Boundary element method and power series method for onedimensional non-linear filtration problems,” Izv. Irkutsk. Gos. Univ Autom. Control Comput. Sci. 51 621-626
[4]  
Kudryashov N. A.(2012)On the analytic solutions of a special boundary value problem for a nonlinear heat equation in polar coordinates Ser. Mat. 5 2-17
[5]  
Sinel’shchikov D. I.(2018)On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation J. Appl. Ind. Math. 12 255-263
[6]  
Kazakov A. L.(2019)Some recent results and proposals for the use of radial basis functions in the BEM Sib. Elektron Mat. Izv. 16 1057-1068
[7]  
Spevak L. F.(1999)The dual reciprocity boundary element formulation for convection–diffusion–reaction problems with variable velocity field using different radial basis functions Eng. Anal. Bound. Elem. 23 285-296
[8]  
Kazakov A. L.(2018)Solution of the problem of initiating the heat wave for a nonlinear heat conduction equation using the boundary element method Int. J. Mech. Sci. 145 367-377
[9]  
Kuznetsov P. A.(2019)On the analytical and numerical study of a two-dimensional nonlinear heat equation with a source term Comput. Math. Math. Phys. 59 1015-1029
[10]  
Kazakov A. L.(2020)Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions Symmetry 12 921-22