On the word problem and the conjugacy problem for groups of the formF/V(R)

被引:0
作者
M. I. Anokhin
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 1997年 / 61卷
关键词
word problem; conjugacy problem; power problem; variety of groups; Abelian variety of groups;
D O I
暂无
中图分类号
学科分类号
摘要
LetF be a free group with at most countable system\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{x}$$ \end{document} of free generators, letR be its normal subgroup recursively enumerable with respect to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{x}$$ \end{document}, and let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{V}$$ \end{document} be a variety of groups that differs from\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{O}$$ \end{document} and for which the corresponding verbal subgroupV of the free group of countable rank is recursive. It is proved that the word problem inF/V(R) is solvable if and only if this problem is solvable inF/R, and if\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|\mathfrak{x}| \geqslant 3$$ \end{document}, then there exists anR such, that the conjugacy problem inF/R is solvable, but this problem is unsolvable inF/V(R) for any Abelian variety\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{V} \ne \mathfrak{C}$$ \end{document} (all algorithmic problems are regarded with respect to the images of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{x}$$ \end{document} under the corresponding natural epimorphisms).
引用
收藏
页码:3 / 8
页数:5
相关论文
共 50 条
  • [41] Word and Conjugacy Problems in Groups Gk+1k
    Fedoseev, D. A.
    Karpov, A. B.
    Manturov, V. O.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (02) : 176 - 193
  • [42] On the conjugacy problem of positive braids
    Elrifai, EA
    Benkhalifa, M
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (03) : 311 - 324
  • [43] On a conjugacy problem in billiard dynamics
    D. V. Treschev
    Proceedings of the Steklov Institute of Mathematics, 2015, 289 : 291 - 299
  • [44] On a conjugacy problem in billiard dynamics
    Treschev, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 (01) : 291 - 299
  • [45] On the conjugacy search problem and left conjugacy closed loops
    Juha Partala
    Tapio Seppänen
    Applicable Algebra in Engineering, Communication and Computing, 2008, 19 : 311 - 322
  • [46] On the conjugacy search problem and left conjugacy closed loops
    Partala, Juha
    Seppaenen, Tapio
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2008, 19 (04) : 311 - 322
  • [47] Geometry of the word problem for 3-manifold groups
    Brittenham, Mark
    Hermiller, Susan
    Susse, Tim
    JOURNAL OF ALGEBRA, 2018, 499 : 111 - 150
  • [48] A new algorithm for solving the word problem in braid groups
    Garber, D
    Kaplan, S
    Teicher, M
    ADVANCES IN MATHEMATICS, 2002, 167 (01) : 142 - 159
  • [49] Word problem for special braid groups1
    Karpuz, Eylem Guzel
    Ozalan, Nurten Urlu
    QUAESTIONES MATHEMATICAE, 2020, 43 (07) : 931 - 957
  • [50] A SIMPLE SOLUTION TO THE WORD PROBLEM FOR VIRTUAL BRAID GROUPS
    Bellingeri, Paolo
    Cisneros de la Cruz, Bruno A.
    Paris, Luis
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 283 (02) : 271 - 287