On the word problem and the conjugacy problem for groups of the formF/V(R)

被引:0
作者
M. I. Anokhin
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 1997年 / 61卷
关键词
word problem; conjugacy problem; power problem; variety of groups; Abelian variety of groups;
D O I
暂无
中图分类号
学科分类号
摘要
LetF be a free group with at most countable system\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{x}$$ \end{document} of free generators, letR be its normal subgroup recursively enumerable with respect to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{x}$$ \end{document}, and let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{V}$$ \end{document} be a variety of groups that differs from\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{O}$$ \end{document} and for which the corresponding verbal subgroupV of the free group of countable rank is recursive. It is proved that the word problem inF/V(R) is solvable if and only if this problem is solvable inF/R, and if\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|\mathfrak{x}| \geqslant 3$$ \end{document}, then there exists anR such, that the conjugacy problem inF/R is solvable, but this problem is unsolvable inF/V(R) for any Abelian variety\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{V} \ne \mathfrak{C}$$ \end{document} (all algorithmic problems are regarded with respect to the images of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{x}$$ \end{document} under the corresponding natural epimorphisms).
引用
收藏
页码:3 / 8
页数:5
相关论文
共 50 条
  • [21] The simultaneous conjugacy problem in groups of piecewise linear functions
    Kassabov, Martin
    Matucci, Francesco
    GROUPS GEOMETRY AND DYNAMICS, 2012, 6 (02) : 279 - 315
  • [22] The conjugacy problem for Dehn twist automorphisms of free groups
    Cohen, MM
    Lustig, M
    COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (02) : 179 - 200
  • [23] The power conjugacy problem in Higman-Thompson groups
    Barker, Nathan
    Duncan, Andrew J.
    Robertson, David M.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2016, 26 (02) : 309 - 374
  • [24] The Conjugacy Problem in Free Solvable Groups and Wreath Products of Abelian Groups is in TC0
    Miasnikov, Alexei
    Vassileva, Svetla
    Weiss, Armin
    THEORY OF COMPUTING SYSTEMS, 2019, 63 (04) : 809 - 832
  • [25] The Conjugacy Problem in Free Solvable Groups and Wreath Products of Abelian Groups is in TC0
    Alexei Miasnikov
    Svetla Vassileva
    Armin Weiß
    Theory of Computing Systems, 2019, 63 : 809 - 832
  • [26] The Conjugacy Problem in Free Solvable Groups and Wreath Products of Abelian Groups is in TC0
    Miasnikov, Alexei
    Vassileva, Svetla
    Weiss, Armin
    COMPUTER SCIENCE - THEORY AND APPLICATIONS (CSR 2017), 2017, 10304 : 217 - 231
  • [27] The word problem in Hanoi Towers groups
    Bondarenko, Ievgen
    ALGEBRA & DISCRETE MATHEMATICS, 2014, 17 (02): : 248 - 255
  • [28] A PTIME solution to the restricted conjugacy problem in generalized Heisenberg groups
    Blaney, Kenneth R.
    Nikolaev, Andrey
    GROUPS COMPLEXITY CRYPTOLOGY, 2016, 8 (01) : 69 - 74
  • [29] Conjugacy problem in groups of oriented geometrizable 3-manifolds
    Préaux, JP
    TOPOLOGY, 2006, 45 (01) : 171 - 208
  • [30] The Multiple Conjugacy Search Problem in Virtually Nilpotent Polycyclic Groups
    Monetta, C.
    Tortora, A.
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2022, 13 : 61 - 70