Sequences of Independent Functions in Rearrangement Invariant Spaces

被引:0
作者
S. V. Astashkin
机构
[1] Samara National Research University,
来源
Siberian Mathematical Journal | 2021年 / 62卷
关键词
rearrangement invariant space; Rademacher functions; independent functions; Orlicz space; Luxemburg norm; 517.982.22;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain some new estimates that show the extremality of the Rademacher system in the set of sequences of independent functions considered in rearrangement invariant spaces.
引用
收藏
页码:189 / 198
页数:9
相关论文
共 18 条
[1]  
Montgomery-Smith S(2000)Embeddings of rearrangement invariant spaces that are not strictly singular Positivity 4 397-404
[2]  
Semenov E(1997)Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities Trans. Amer. Math. Soc. 349 997-1027
[3]  
Figiel T(1979)Symmetric structures in Banach spaces Mem. Amer. Math. Soc. 19 1-298
[4]  
Hitchenko P(1971)Interpolation theorems for the pairs of spaces Trans. Amer. Math. Soc. 159 207-221
[5]  
Johnson WB(1973) and  Soviet Math. Dokl. 14 538-541
[6]  
Schechtman G(1966)Description of interpolation spaces of the pair Studia Math. 26 273-299
[7]  
Zinn J(1965) and some related problems Mat. Sb. 66 473-482
[8]  
Johnson WB(1996)Spaces between Math. Proc. Cambridge Philos. Soc. 119 91-101
[9]  
Maurey B(undefined) and undefined undefined undefined-undefined
[10]  
Schechtman G(undefined) and the theorem of Marcinkiewicz undefined undefined undefined-undefined