A Note on the Cycle Isolation Number of Graphs

被引:0
|
作者
Gang Zhang
Baoyindureng Wu
机构
[1] Xiamen University,School of Mathematical Sciences
[2] Xinjiang University,College of Mathematics and System Sciences
关键词
Domination; Partial domination; Isolating sets; Cycles; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A set D of vertices in a graph G is a cycle isolating set of G if G-N[D]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-N[D]$$\end{document} contains no cycle. The cycle isolation number of G, denoted by ιc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota _c(G)$$\end{document}, is the minimum cardinality of a cycle isolating set of G. In this paper, we prove that if G is a connected graph of size m that is not a C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_3$$\end{document}, then ιc(G)≤m+15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota _c(G) \le \frac{m+1}{5}$$\end{document}, and we characterize the extremal graphs. Moreover, we conjecture that if G is a connected graph of size m that is not a Cg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_g$$\end{document}, then ιc(G)≤m+1g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota _c(G) \le \frac{m+1}{g+2}$$\end{document}, where g is the girth of G.
引用
收藏
相关论文
共 50 条
  • [1] A Note on the Cycle Isolation Number of Graphs
    Zhang, Gang
    Wu, Baoyindureng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)
  • [2] A characterization of graphs with maximum cycle isolation number
    Chen, Siyue
    Cui, Qing
    Zhang, Jingshu
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 161 - 175
  • [3] A Sharp Upper Bound on the Cycle Isolation Number of Graphs
    Cui, Qing
    Zhang, Jingshu
    GRAPHS AND COMBINATORICS, 2023, 39 (06)
  • [4] A Sharp Upper Bound on the Cycle Isolation Number of Graphs
    Qing Cui
    Jingshu Zhang
    Graphs and Combinatorics, 2023, 39
  • [5] On the cycle isolation number of triangle-free graphs
    Zhang, Gang
    Wu, Baoyindureng
    DISCRETE MATHEMATICS, 2024, 347 (12)
  • [6] Retraction Note to: A study on domatic number of cycle related graphs
    A. Antony Mary
    A. Amutha
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (Suppl 1) : 515 - 515
  • [7] A Note on McPherson Number of Graphs
    Susanth, C.
    Kalayathankal, Sunny Joseph
    Sudev, N. K.
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2016, 8 (02): : 123 - 127
  • [8] A Note on Cycle Lengths in Graphs
    R.J. Gould
    P.E. Haxell
    A.D. Scott
    Graphs and Combinatorics, 2002, 18 : 491 - 498
  • [9] Isolation Number of Transition Graphs
    Qu, Junhao
    Zhang, Shumin
    MATHEMATICS, 2025, 13 (01)
  • [10] A note on cycle lengths in graphs
    Gould, RJ
    Haxell, PE
    Scott, AD
    GRAPHS AND COMBINATORICS, 2002, 18 (03) : 491 - 498