Generation of synthetic training data for SEEG electrodes segmentation

被引:0
作者
Anja Pantovic
Xiaoxi Ren
Cédric Wemmert
Irène Ollivier
Caroline Essert
机构
[1] Université de Strasbourg,ICube Laboratory
[2] Strasbourg University Hospital,Department of Neurosurgery
来源
International Journal of Computer Assisted Radiology and Surgery | 2022年 / 17卷
关键词
Stereoelectroencephalography; Epilepsy; Data augmentation; Segmentation; Sinogram; Radon transform;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:937 / 943
页数:6
相关论文
共 61 条
  • [1] Scheffer IE(2017)ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology Epilepsia 58 512-521
  • [2] Berkovic S(2018)Indications and limits of stereoelectroencephalography (SEEG) Neurophysiol Clinique 48 15-24
  • [3] Capovilla G(2017)SEEG assistant: a 3DSlicer extension to support epilepsy surgery BMC Bioinf 18 124-220
  • [4] Connolly MB(2018)Comparison of interactive and automatic segmentation of stereoelectroencephalography electrodes on computed tomography post-operative images: preliminary results Healthcare Technol Lett 5 215-2396
  • [5] French J(2018)Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study Lancet 392 2388-401
  • [6] Guilhoto L(2016)Is SEEG safe? A systematic review and meta-analysis of stereoelectro-encephalography-related complications Epilepsia 57 386-240
  • [7] Hirsch E(2012)CT artifacts: causes and reduction techniques Imag Med 4 229-1381
  • [8] Jain S(2018)Convolutional neural network based metal artifact reduction in X-ray computed tomography IEEE Trans Med Imag 37 1370-238
  • [9] Mathern GW(2020)Deep sinogram completion with image prior for metal artifact reduction in CT images IEEE Trans Med Imag 40 228-696
  • [10] Moshé SL(1999)Metal streak artifacts in x-ray computed tomography: a simulation study IEEE Trans Nucl Sci 46 691-undefined