Quasi-Invariance for Infinite-Dimensional Kolmogorov Diffusions

被引:0
作者
Fabrice Baudoin
Maria Gordina
Tai Melcher
机构
[1] University of Connecticut,Department of Mathematics
[2] University of Virginia,Department of Mathematics
来源
Potential Analysis | 2024年 / 60卷
关键词
Quasi-invariance; Hypoellipticity; Kolmogorov diffusion; Wang’s Harnack inequality; Primary 60J60; 28C20; Secondary 35H10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove Cameron-Martin type quasi-invariance for the heat kernel measure of infinite-dimensional Kolmogorov and similar degenerate diffusions. We first study quantitative functional inequalities, particularly Wang-type Harnack inequalities, for appropriate finite-dimensional approximations of these diffusions, and we prove that these inequalities hold with dimension-independent constants. Applying an approach developed in [7, 12, 13], these uniform bounds may then be used to prove that the heat kernel measure for these infinite-dimensional diffusions is quasi-invariant under changes of the initial state.
引用
收藏
页码:807 / 831
页数:24
相关论文
共 31 条
[1]  
Arnaudon M(2009)Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds Stochastic Process Appl. 119 3653-3670
[2]  
Thalmaier A(2012)Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality J. Funct. Anal. 262 2646-2676
[3]  
Wang F-Y(2021)Transportation inequalities for Markov kernels and their applications Electron. J. Probab. 26 30-1422
[4]  
Baudoin F(2019)Integration by parts and quasi-invariance for the horizontal wiener measure on foliated compact manifolds J. Funct. Anal. 277 1362-219
[5]  
Bonnefont M(2017)Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries J. Eur. Math. Soc. (JEMS) 19 151-636
[6]  
Baudoin F(2020)Gradient bounds for Kolmogorov type diffusions Ann. Inst. H. Poincaré, Probab. Statist. 56 612-4350
[7]  
Eldredge N(2013)Quasi-invariance for heat kernel measures on sub-Riemannian infinite-dimensional Heisenberg groups Trans. Amer. Math. Soc. 365 4313-1022
[8]  
Baudoin F(2016)Hypoelliptic heat kernels on infinite-dimensional Heisenberg groups Trans. Amer. Math. Soc. 368 989-2461
[9]  
Qi F(2008)Heat kernel analysis on infinite-dimensional Heisenberg groups J. Funct. Anal. 255 2395-550
[10]  
Gordina M(2009)Integrated Harnack inequalities on Lie groups J. Differ. Geom. 83 501-181