Galois coverings and endomorphisms of projective varieties

被引:0
|
作者
Marian Aprodu
Stefan Kebekus
Thomas Peternell
机构
[1] Institute of Mathematics “Simion Stoilow” of the Romanian Academy,Mathematisches Institut
[2] Şcoala Normală Superioară,Mathematisches Institut
[3] Universität zu Köln,undefined
[4] Universität Bayreuth,undefined
来源
Mathematische Zeitschrift | 2008年 / 260卷
关键词
Vector Bundle; Projective Space; Irreducible Component; Projective Variety; Rational Curf;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the vector bundle associated to a Galois covering of projective manifolds is ample (resp. nef) under very mild conditions. This results is applied to the study of ramified endomorphisms of Fano manifolds with b2 = 1. It is conjectured that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}_n$$\end{document} is the only Fano manifold admitting an endomorphism of degree d ≥ 2, and we verify this conjecture in several cases. An important ingredient is a generalization of a theorem of Andreatta–Wisniewski, characterizing projective space via the existence of an ample subsheaf in the tangent bundle.
引用
收藏
页码:431 / 449
页数:18
相关论文
共 50 条