We prove that the vector bundle associated to a Galois covering of projective manifolds is ample (resp. nef) under very mild conditions. This results is applied to the study of ramified endomorphisms of Fano manifolds with b2 = 1. It is conjectured that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{P}}_n$$\end{document} is the only Fano manifold admitting an endomorphism of degree d ≥ 2, and we verify this conjecture in several cases. An important ingredient is a generalization of a theorem of Andreatta–Wisniewski, characterizing projective space via the existence of an ample subsheaf in the tangent bundle.