Plancherel–Pólya Inequality for Entire Functions of Exponential Type in L2(ℝ)

被引:0
作者
E. V. Berestova
机构
[1] Ural Federal University,Institute of Natural Sciences and Mathematics
来源
Analysis Mathematica | 2018年 / 44卷
关键词
Plancherel–Pólya inequality; Paley–Wiener space; entire function of exponential type; Fourier transform; 30D10; 30D15; 42A99;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the Plancherel–Pólya inequality ∑k∈ℤ|f(k)|2⩽c2(σ)||f||L2(ℝ)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum {_{k \in \mathbb{Z}}} |f(k){|^2} \leqslant {c_2}\left( \sigma \right)||f||_{{L^2}\left( \mathbb{R} \right)}^2$$\end{document} on the set of entire functions f of exponential type at most σ whose restrictions to the real line belong to the space L2(ℝ). We prove that c2(σ) = [σ/π] for σ > 0 and describe the extremal functions.
引用
收藏
页码:43 / 50
页数:7
相关论文
共 8 条
  • [1] Donoho D. L.(1992)Signal recovery and the large sieve SIAM J. Appl. Math. 52 577-591
  • [2] Logan B. F.(2014)On sharp constants in Marcinkiewicz–Zygmund and Plancherel–Polya inequalities Proc. Amer. Math. Soc. 142 3575-3584
  • [3] Lubinsky D. S.(1951)Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables Trudy Mat. Inst. Steklov 38 244-278
  • [4] Nikol’skii S. M.(2014)Concentration of Lith. Math. J. 54 471-481
  • [5] Norvidas S.(1931)-bandlimited functions on discrete sets Jahr. Deutsch. Math. Vereinigung 40 80-163
  • [6] Pólya G.(1938)Über ganze Funktionen vom Minimaltypus der Ordnung 1 Comment. Math. Helv. 10 110-undefined
  • [7] Plancherel M.(undefined)Fonctions entières et intégrales de Fourier multiples undefined undefined undefined-undefined
  • [8] Pólya G.(undefined)undefined undefined undefined undefined-undefined