Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement

被引:0
|
作者
Xiong Meng
Jennifer K. Ryan
机构
[1] University of East Anglia,School of Mathematics
[2] Harbin Institute of Technology,Department of Mathematics
来源
Numerische Mathematik | 2017年 / 136卷
关键词
65M60; 65M12; 65M15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-th order (1≤α≤k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1 \le \alpha \le {k+1})$$\end{document} divided difference of the DG error in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm is of order k+32-α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k + \frac{3}{2} - \frac{\alpha }{2}}$$\end{document} when upwind fluxes are used, under the condition that |f′(u)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|f'(u)|$$\end{document} possesses a uniform positive lower bound. By the duality argument, we then derive superconvergence results of order 2k+32-α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2k + \frac{3}{2} - \frac{\alpha }{2}}$$\end{document} in the negative-order norm, demonstrating that it is possible to extend the Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to obtain at least (32k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\frac{3}{2}k+1})$$\end{document}th order superconvergence for post-processed solutions. As a by-product, for variable coefficient hyperbolic equations, we provide an explicit proof for optimal convergence results of order k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k+1}$$\end{document} in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm for the divided differences of DG errors and thus (2k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({2k+1})$$\end{document}th order superconvergence in negative-order norm holds. Numerical experiments are given that confirm the theoretical results.
引用
收藏
页码:27 / 73
页数:46
相关论文
共 50 条
  • [1] Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement
    Meng, Xiong
    Ryan, Jennifer K.
    NUMERISCHE MATHEMATIK, 2017, 136 (01) : 27 - 73
  • [2] Divided difference estimates and accuracy enhancement of discontinuous Galerkin methods for nonlinear symmetric systems of hyperbolic conservation laws
    Meng, Xiong
    Ryan, Jennifer K.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 125 - 155
  • [3] Semi-Lagrangian discontinuous Galerkin methods for scalar hyperbolic conservation laws
    Kometa, Bawfeh K.
    Tambue, Antoine
    Iqbal, Naveed
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (05) : 482 - 503
  • [4] Optimal error estimates to smooth solutions of the central discontinuous Galerkin methods for nonlinear scalar conservation laws*
    JIAO, M. E. N. G. J. I. A. O.
    JIANG, Y. A. N.
    SHU, CHI-WANG
    ZHANG, M. E. N. G. P. I. N. G.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (04) : 1401 - 1435
  • [5] A priori error estimates of Adams-Bashforth discontinuous Galerkin methods for scalar nonlinear conservation laws
    Puelz, Charles
    Riviere, Beatrice
    JOURNAL OF NUMERICAL MATHEMATICS, 2018, 26 (03) : 151 - 172
  • [6] Entropy-stable discontinuous Galerkin difference methods for hyperbolic conservation laws
    Yan, Ge
    Kaur, Sharanjeet
    Banks, Jeffrey W.
    Hicken, Jason E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 422
  • [7] Aspects of discontinuous Galerkin methods for hyperbolic conservation laws
    Flaherty, JE
    Krivodonova, L
    Remacle, JF
    Shephard, MS
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2002, 38 (10) : 889 - 908
  • [8] Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws
    Hartmann, R
    Houston, P
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (03): : 979 - 1004
  • [9] Discontinuous Galerkin methods on graphics processing units for nonlinear hyperbolic conservation laws
    Fuhry, Martin
    Giuliani, Andrew
    Krivodonova, Lilia
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 76 (12) : 982 - 1003
  • [10] DIFFERENCE QUOTIENT ESTIMATES AND ACCURACY ENHANCEMENT OF DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR CONVECTION-DIFFUSION EQUATIONS
    Bi, Hui
    Xu, Yanan
    Sun, Yang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 1766 - 1796