AutoScore-Ordinal: an interpretable machine learning framework for generating scoring models for ordinal outcomes

被引:0
|
作者
Seyed Ehsan Saffari
Yilin Ning
Feng Xie
Bibhas Chakraborty
Victor Volovici
Roger Vaughan
Marcus Eng Hock Ong
Nan Liu
机构
[1] Duke-NUS Medical School,Centre for Quantitative Medicine
[2] Duke-NUS Medical School,Programme in Health Services and Systems Research
[3] Duke University,Department of Biostatistics and Bioinformatics
[4] National University of Singapore,Department of Statistics and Data Science
[5] Erasmus MC University Medical Center,Department of Neurosurgery
[6] Erasmus MC,Department of Public Health
[7] Singapore General Hospital,Department of Emergency Medicine
[8] Singapore Health Services,SingHealth AI Office
[9] Institute of Data Science,undefined
[10] National University of Singapore,undefined
来源
BMC Medical Research Methodology | / 22卷
关键词
Interpretable machine learning; Medical decision making; Clinical score; Ordinal outcome; Electronic health records;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] AutoScore-Ordinal: an interpretable machine learning framework for generating scoring models for ordinal outcomes
    Saffari, Seyed Ehsan
    Ning, Yilin
    Xie, Feng
    Chakraborty, Bibhas
    Volovici, Victor
    Vaughan, Roger
    Ong, Marcus Eng Hock
    Liu, Nan
    BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)
  • [2] AutoScore-Imbalance: An interpretable machine learning tool for development of clinical scores with rare events data
    Yuan, Han
    Xie, Feng
    Ong, Marcus Eng Hock
    Ning, Yilin
    Chee, Marcel Lucas
    Saffari, Seyed Ehsan
    Abdullah, Hairil Rizal
    Goldstein, Benjamin Alan
    Chakraborty, Bibhas
    Liu, Nan
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 129
  • [3] Sparse Kernel Machine Regression for Ordinal Outcomes
    Shen, Yuanyuan
    Liao, Katherine P.
    Cai, Tianxi
    BIOMETRICS, 2015, 71 (01) : 63 - 70
  • [4] Fitting mixed-effects models for repeated ordinal outcomes with the NLMIXED procedure
    Ching-Fan Sheu
    Behavior Research Methods, Instruments, & Computers, 2002, 34 : 151 - 157
  • [5] The explanation game: a formal framework for interpretable machine learning
    Watson, David S.
    Floridi, Luciano
    SYNTHESE, 2021, 198 (10) : 9211 - 9242
  • [6] R.ROSETTA: an interpretable machine learning framework
    Mateusz Garbulowski
    Klev Diamanti
    Karolina Smolińska
    Nicholas Baltzer
    Patricia Stoll
    Susanne Bornelöv
    Aleksander Øhrn
    Lars Feuk
    Jan Komorowski
    BMC Bioinformatics, 22
  • [7] The explanation game: a formal framework for interpretable machine learning
    David S. Watson
    Luciano Floridi
    Synthese, 2021, 198 : 9211 - 9242
  • [8] R.ROSETTA: an interpretable machine learning framework
    Garbulowski, Mateusz
    Diamanti, Klev
    Smolinska, Karolina
    Baltzer, Nicholas
    Stoll, Patricia
    Bornelov, Susanne
    Ohrn, Aleksander
    Feuk, Lars
    Komorowski, Jan
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [9] Active Sampling for Learning Interpretable Surrogate Machine Learning Models
    Saadallah, Amal
    Morik, Katharina
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 264 - 272
  • [10] Interpretable Machine Learning Models for PISA Results in Mathematics
    Gomez-Talal, Ismael
    Bote-Curiel, Luis
    Luis Rojo-Alvarez, Jose
    IEEE ACCESS, 2025, 13 : 27371 - 27397