Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure

被引:0
|
作者
S. V. Galaev
机构
[1] Saratov State University,
来源
Siberian Mathematical Journal | 2016年 / 57卷
关键词
almost contact metric structure; -extended connection; extended almost contact metric structure; Wagner curvature tensor;
D O I
暂无
中图分类号
学科分类号
摘要
Considering a manifold (φ, ξ, η, g, X, D) with contact metric structure, we introduce the concept of N-extended connection (connection on a vector bundle (D, π,X)), with N an endomorphism of the distribution D, and show that the curvature tensor of each N-extended connection for a suitably chosen endomorphism N coincides with the Wagner curvature tensor.
引用
收藏
页码:498 / 504
页数:6
相关论文
共 47 条
  • [1] Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure
    Galaev, S. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (03) : 498 - 504
  • [2] On the contact conformal curvature tensor of a contact metric manifold
    Kim, Jeong-Sik
    Choi, Jaedong
    Ozgur, Cihan
    Tripathi, Mukut Mani
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2006, 37 (04): : 199 - 207
  • [3] On the concircular curvature tensor of a contact metric manifold
    Blair, DE
    Kim, JS
    Tripathi, MM
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (05) : 883 - 892
  • [4] ON ENDO CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD
    Dwivedi, Mohit Kumar
    Jun, Jae-Bok
    Tripathi, Mukut Mani
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (02): : 177 - 185
  • [5] ON THE CONHARMONIC CURVATURE TENSOR OF A N(K)-CONTACT METRIC MANIFOLD
    Tripathi, Gajendra Nath
    Rastogi, Rati
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2019, 18 (1-2): : 45 - 55
  • [6] ON THE QUASI-CONFORMAL CURVATURE TENSOR OF A (k, μ)-CONTACT METRIC MANIFOLD
    De, U. C.
    Sarkar, Avijit
    MATHEMATICAL REPORTS, 2012, 14 (02): : 115 - 129
  • [7] Certain Results on (k,μ)-Contact Metric Manifold endowed with Concircular Curvature Tensor
    Kumar, R. T. Naveen
    Reddy, P. Siva Kota
    Venkatesha
    Sangeetha, M.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (01): : 215 - 225
  • [8] On the Sign of the Curvature of a Contact Metric Manifold
    Blair, David E.
    MATHEMATICS, 2019, 7 (10)
  • [9] The curvature tensor of -contact metric manifolds
    Arslan, Kadri
    Carriazo, Alfonso
    Martin-Molina, Veronica
    Murathan, Cengizhan
    MONATSHEFTE FUR MATHEMATIK, 2015, 177 (03): : 331 - 344
  • [10] ON phi-SYMMETRIC tau-CURVATURE TENSOR IN N(k)-CONTACT METRIC MANIFOLD
    Ingalahalli, Gurupadavva
    Bagewadi, C. S.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2014, 6 (02) : 203 - 211