A relaxed estimate of the degree of approximation by Fourier series in generalized Hölder metricУпрощеннаь оценка порядка приближения суммами Фурье в обобщенной метрике Гельдера

被引:0
作者
L. Leindler
机构
[1] University of Szeged,Bolyai Institute
来源
Analysis Mathematica | 2009年 / 35卷
关键词
Fourier Series; Classical Class; Trigonometric Approximation; Approximation Degree; Classical Means;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the paper is to give a relaxed estimate pertaining to the degree of approximation of the partial sums of Fourier series in a new Banach space of functions introduced by Das, Nath and Ray [2]. Furthermore, applying our new result, we verify, under certain natural conditions, that some classical means have the same approximation degree as the partial sums.
引用
收藏
页码:51 / 60
页数:9
相关论文
共 6 条
[1]  
Chandra P.(2002)Trigonometric approximation of functions in J. Math. Anal. Appl. 275 13-26
[2]  
Lebesgue H.(1910)-norm Bull. Soc. Math. France 38 184-210
[3]  
Leindler L.(1979)Sur la représentation trigonométrique approachée des fonctions satisfaisant à une condition de Lipschitz Studia Sci. Math. Hungar. 14 431-439
[4]  
Leindler L.(2005)Generalization of Prössdorf’s theorems J. Math. Anal. Appl. 302 129-136
[5]  
Prössdorf S.(1975)Trigonometric approximation in Math. Nachr. 69 7-14
[6]  
Quade E. S.(1937)-norm Duke Math. J. 3 529-543