Analysis of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} reduction potentials and component load collectives of 48 V-hybrids under real-driving conditions

被引:0
作者
Daniel Förster
Lukas Decker
Martin Doppelbauer
Frank Gauterin
机构
[1] Mercedes-Benz AG,
[2] Karlsruhe Institute of Technology (KIT),undefined
关键词
-Hybrid; System design; Topology; Hybrid functions; reduction; E-drive; Recuperation; Electrification;
D O I
10.1007/s41104-021-00076-3
中图分类号
学科分类号
摘要
The development of innovative powertrain technologies is crucial for car manufacturers to comply with decreasing CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} emission limits. They face the challenge to develop products which fulfill customer requirements in terms of functionality, comfort and cost but also provide a significant CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} efficiency improvement. 48V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${48}\hbox { V}$$\end{document}-hybrids can achieve these conflicting goals due to their low vehicle-integration effort and system costs while substantially increasing powertrain efficiency. The variance of real-driving scenarios has to be considered in system development to achieve the maximum customer benefit with the chosen system design, such as installed electrical power or topology. This paper presents a comprehensive investigation of different 48V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${48}\hbox { V}$$\end{document}-system designs under real-driving conditions. The influence of varying real-driving scenarios on component load collectives is analyzed for P1 and P2 topologies. Furthermore, the CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} reduction potential and the influence of different hybrid functions such as electric driving is identified. The contribution of this paper is the identification of 48V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${48}\hbox { V}$$\end{document}-system potentials under real-driving conditions and the corresponding component requirements, in order to support the development of customer-oriented 48V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${48}\hbox { V}$$\end{document}-systems.
引用
收藏
页码:45 / 62
页数:17
相关论文
共 40 条
[1]  
André M(2004)The ARTEMIS European driving cycles for measuring car pollutant emissions Sci. Total Environ. 334–335 73-84
[2]  
Bütterling P(2016)Effiziente 48-V-Antriebs-und Bordnetzarchitekturen MTZ Motortechnische Z. 77 48-53
[3]  
Benders B(2020)Data-driven identification of characteristic real-driving cycles based on k-means clustering and mixed-integer optimization IEEE Trans. Veh. Technol. 69 2398-2410
[4]  
Eckstein L(2017)48-V-Technologien im Fahrzeug ATZextra 22 28-33
[5]  
Förster D(2018)A review of power management strategies and component sizing methods for hybrid vehicles Renew. Sustain. Energy Rev. 96 132-144
[6]  
Inderka RB(2015)Electric Axle for 48-V electrical hybrid systems MTZ Worldw. 76 10-15
[7]  
Gauterin F(2018)Modeling and validation of 48 V mild hybrid lithium-ion battery pack SAE Int. J. Alt. Power. 7 273-287
[8]  
Fritz M(2018)Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles IEEE Trans. Control Syst. Technol. 26 2198-2205
[9]  
Hillenbrand T(2016)Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles IEEE Trans. Veh. Technol. 66 57-70
[10]  
Pfund T(2019)Towards a smarter energy management system for hybrid vehicles: a comprehensive review of control strategies Appl. Sci. 9 2026-undefined