Neighbor Sum Distinguishing Total Choice Number of Planar Graphs without 6-cycles

被引:0
作者
Dong Han Zhang
You Lu
Sheng Gui Zhang
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics and Xi’an
[2] Shangluo University,Budapest Joint Research Center for Combinatorics
来源
Acta Mathematica Sinica, English Series | 2020年 / 36卷
关键词
Planar graphs; neighbor sum distinguishing total choice number; Combinatorial Nullstellensatz; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Pilsniak and Woźniak put forward the concept of neighbor sum distinguishing (NSD) total coloring and conjectured that any graph with maximum degree Δ admits an NSD total (Δ + 3)-coloring in 2015. In 2016, Qu et al. showed that the list version of the conjecture holds for any planar graph with Δ ≥ 13. In this paper, we prove that any planar graph with Δ Δ 7 but without 6-cycles satisfies the list version of the conjecture.
引用
收藏
页码:1417 / 1428
页数:11
相关论文
共 45 条
  • [1] Alon N(1999)Combinatorial nullstellensatz Combin. Probab. Comput. 8 7-29
  • [2] Ge S(2017)Neighbor sum distinguishing total coloring of planar graphs without 5-cycles Theoret. Comput. Sci. 689 169-175
  • [3] Li J(2018)Neighbor sum distinguishing total coloring of graphs with bounded treewidth J. Comb. Optim. 36 23-34
  • [4] Xu C(2015)Neighbor sum distinguishing total colorings of planar graphs J. Comb. Optim. 30 675-688
  • [5] Han M(2018)Neighbor sum distinguishing total coloring and list neighbor sum distinguishing total coloring Discrete Appl. Math. 237 109-115
  • [6] Lu Y(2013)Neighbor sum distinguishing total coloring of K Front. Math. China 8 1351-1366
  • [7] Luo R(2018)-minor-free graphs J. Comb. Optim. 35 778-793
  • [8] Li H(2015)Neighbor sum distinguishing list total coloring of subcubic graphs Graphs Comb. 31 771-782
  • [9] Ding L(2016)On the total-neighbor-distinguishing index by sums Acta Math. Sin. (Engl. Ser.) 32 537-548
  • [10] Liu B(2016)Neighbor distinguishing total choice number of sparse graphs via the Combinatorial Nullstellensatz J. Comb. Optim. 32 906-916