A Generalized Class of k-Starlike Functions Involving a Calculus Operator

被引:0
作者
Poonam Sharma
Vanita Jain
机构
[1] University of Lucknow,Department of Mathematics & Astronomy
[2] Maharaja Agrasen College,Department of Mathematics
[3] University of Delhi,undefined
来源
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences | 2013年 / 83卷
关键词
Analytic functions; Convolution; -Starlike and ; -uniformly convex functions; Calculus operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, involving a calculus operator I∼δ,ν,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{I}^{\delta ,\nu } , $$\end{document} a generalized class US(k,δ,ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{US}}(k,\delta ,\nu ) $$\end{document} of k-starlike functions is defined and an estimate for coefficients of functions belonging to this class is determined. For this class, coefficient inequality is given and is applied to find certain mappings of the operator I∼δ,ν,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{I}^{\delta ,\nu } , $$\end{document} under some parametric restrictions. Results based on inclusion property and convolution property, are also derived. Further, for a subclass US¯(k,δ,ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\text{US}} (k,\delta ,\nu ) $$\end{document} of US(k,δ,ν),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{US}}(k,\delta ,\nu ), $$\end{document} results on bounds, extreme points and radius of starlikeness are obtained.
引用
收藏
页码:247 / 252
页数:5
相关论文
共 43 条
[1]  
Kanas S(2000)Conic regions and Rev Roumaine Math Pures Appl 45 647-657
[2]  
Wiśniowska A(1999)-uniformly starlike functions J Comput Appl Math 105 327-336
[3]  
Kanas S(1998)Conic regions and k-uniform convexity Folia Sci Tech Resov 170 65-78
[4]  
Wiśniowska A(2001)Conic regions and Publ l’Inst Math 69 91-100
[5]  
Kanas S(2000)-uniform convexity II Integr Transform Special Funct 9 21-132
[6]  
Wiśniowska A(1991)Subclasses of Ann Polon Math 56 87-92
[7]  
Kanas S(1991)-uniformly convex and starlike functions defined by generalized derivative II J Math Anal Appl 155 364-370
[8]  
Yaguchi T(1993)Linear operators associated with Proc Am Math Soc 118 189-196
[9]  
Kanas S(1992)-uniformly convex functions Ann Polon Math 57 165-175
[10]  
Srivastava HM(1997)On uniformly convex functions Complex Var Theory Appl 34 293-312