Quantitative Inheritance Properties for Simultaneous Approximation by Tensor Product Operators

被引:0
作者
Laura Beutel
Heinz H. Gonska
机构
[1] Gerhard Mercator University,Institute of Mathematics
来源
Numerical Algorithms | 2003年 / 33卷
关键词
tensor products; inheritance properties; parametric extensions; simultaneous approximation; moduli of smoothness; Bernstein operators; cubic splines;
D O I
暂无
中图分类号
学科分类号
摘要
Our results describe how quantitative properties of univariate operators are inherited by the tensor product of their parametric extensions. This includes statements concerning simultaneous approximation. The estimates are in terms of partial and total moduli of smoothness of higher order. Applications are given for cubic interpolatory splines and Bernstein operators. Further applications are possible.
引用
收藏
页码:83 / 92
页数:9
相关论文
共 13 条
[1]  
Birkhoff G.(1960)Smooth surface interpolation J. Math. Phys. 39 258-268
[2]  
Garabedian H.(1962)Bicubic spline interpolation J. Math. Phys. 41 212-218
[3]  
de Boor C.(1983)The method of parametric extension applied to right invertible operators Numer. Funct. Anal. Optim. 6 135-148
[4]  
Delvos F.J.(1964)Multivariable curve interpolation J. Assoc. Comput. Math. 2 221-228
[5]  
Schempp W.(1984)Quantitative Korovkin-type theorems on simultaneous approximation Math. Z. 186 419-433
[6]  
Ferguson J.(1990)Degree of simultaneous approximation of bivariate functions by Gordon operators J. Approx. Theory 62 170-191
[7]  
Gonska H.H.(1933)On linear functional operations and the moment problem Ann. Math. 34 317-328
[8]  
Gonska H.H.(1926)Interpolationsformeln für Funktionen mehrerer Argumente Scandinavisk Aktuarietidskrift 9 59-69
[9]  
Hildebrandt T.H.(1981)Sobre la aproximación mediante ángulos en espacios de funciones continuas Cienc. Mat. 2 101-110
[10]  
Schoenberg I.J.(undefined)undefined undefined undefined undefined-undefined