Norm inequalities related to the Heinz means

被引:0
作者
Fugen Gao
Xuedi Ma
机构
[1] Henan Normal University,College of Mathematics and Information Science
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Norm inequalities; Contractive maps; Unitarily invariant norm;
D O I
暂无
中图分类号
学科分类号
摘要
Let (I,|||⋅|||)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(I,|\!|\!|\cdot|\!|\!|)$\end{document} be a two-sided ideal of operators equipped with a unitarily invariant norm |||⋅|||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|\!|\!| \cdot|\!|\!|$\end{document}. We generalize the results of Kapil’s, using a new contractive map in I to obtain a norm inequality. And we give a new inequality, which is a comparison between the Heinz means and other related inequalities; moreover, we will obtain some correlative conclusions.
引用
收藏
相关论文
共 25 条
  • [1] Bhatia R.(2006)Interpolating the arithmetic–geometric mean inequality and its operator version Linear Algebra Appl. 413 355-363
  • [2] Bhatia R.(1993)More matrix forms of the arithmetic–geometric mean inequality SIAM J. Matrix Anal. Appl. 14 132-136
  • [3] Davis C.(1995)A Cauchy–Schwarz inequality for operators with applications Linear Algebra Appl. 223/224 119-129
  • [4] Bhatia R.(2000)Positive definite function and operator inequalities Bull. Lond. Math. Soc. 32 214-228
  • [5] Davis C.(2006)Sharp inequalities for some operator means SIAM J. Matrix Anal. Appl. 28 822-828
  • [6] Bhatia R.(1999)Comparison of various means for operators J. Funct. Anal. 163 300-323
  • [7] Parthasarathy K.R.(1999)Means of matrices and comparison of their norm Indiana Univ. Math. J. 48 899-936
  • [8] Drissi D.(2017)Norm inequalities related to the Heron and Heinz means Mediterr. J. Math. 14 475-492
  • [9] Hiai F.(2014)Contractive maps on operator ideals and norm inequalities Linear Algebra Appl. 459 429-451
  • [10] Kosaki H.(1998)Arithmetic–geometric mean and related inequalities for operators J. Funct. Anal. 156 115-156