Universal cusp scaling in random partitions

被引:0
作者
Taro Kimura
Ali Zahabi
机构
[1] Université de Bourgogne,Institut de Mathématiques de Bourgogne
[2] CNRS,undefined
[3] London Institute for Mathematical Sciences,undefined
[4] Royal Institution,undefined
来源
Letters in Mathematical Physics | / 114卷
关键词
Random partitions; Determinantal point process; Schur measures; cusp scaling limit; Isomonodromic system; 60B20; 05E10; 60G20; 82B27;
D O I
暂无
中图分类号
学科分类号
摘要
We study the universal scaling limit of random partitions obeying the Schur measure. Extending our previous analysis (Kimura and Zahabi in Lett. Math. Phys. 111:48, 2021. https://doi.org/10.1007/s11005-021-01389-y), we obtain the higher-order Pearcey kernel describing the multi-critical behavior in the cusp scaling limit. We explore the gap probability associated with the higher Pearcey kernel, and derive the coupled nonlinear differential equation and the asymptotic behavior in the large gap limit.
引用
收藏
相关论文
共 55 条
  • [1] Akemann G(2013)Higher order analogues of Tracy–Widom distributions via the lax method J. Phys. A 46 2265-2284
  • [2] Atkin MR(2012)Non-linear PDEs for gap probabilities in random matrices and KP theory Physica D 241 21-28
  • [3] Adler M(1991)Universal scaling of the tail of the density of eigenvalues in random matrix models Phys. Lett. B 268 33-7185
  • [4] Cafasso M(2021)Multicritical random partitions Sémin. Lothar. Comb. 85B 7176-4149
  • [5] van Moerbeke P(1998)Level spacing of random matrices in an external source Phy. Rev. E 58 4140-517
  • [6] Bowick MJ(1998)Universal singularity at the closure of a gap in a random matrix theory Phys. Rev. E 57 481-396
  • [7] Brézin E(2006)Large Commun. Math. Phys. 270 386-L212
  • [8] Betea D(2000) limit of Gaussian random matrices with external source, part III: double scaling limit Integral Equ. Oper. Theory 37 L207-1809
  • [9] Bouttier J(1995)A Fredholm determinant formula for Toeplitz determinants J. Phys. A 28 10-728
  • [10] Walsh H(2023)Largest Eigenvalue distribution in the double scaling limit of matrix models: a Coulomb fluid approach Math. Phys. Anal. Geom. 26 1769-3010