Coupling WW, ZZ unitarized amplitudes to γγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \gamma $$\end{document} in the TeV region

被引:0
作者
Rafael L. Delgado
Antonio Dobado
Felipe J. Llanes-Estrada
机构
[1] Universidad Complutense de Madrid,Departamento de Física Teórica I
来源
The European Physical Journal C | 2017年 / 77卷 / 4期
关键词
Partial Wave; Chiral Expansion; Riemann Sheet; Minimal Composite Higgs Model; Elastic Amplitude;
D O I
10.1140/epjc/s10052-017-4768-y
中图分类号
学科分类号
摘要
We define and calculate helicity partial-wave amplitudes for processes linking the Electroweak Symmetry Breaking Sector (EWSBS) to γγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \gamma $$\end{document}, employing (to NLO) the Higgs-EFT (HEFT) extension of the Standard Model and the Equivalence Theorem, while neglecting all particle masses. The resulting amplitudes can be useful in the energy regime (500GeV-3TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$500~\mathrm{{GeV}}{-}3~\mathrm{{TeV}}$$\end{document}). We also deal with their unitarization so that resonances of the EWSBS can simultaneously be described in the γγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \gamma $$\end{document} initial or final states. Our resulting amplitudes satisfy unitarity, perturbatively in α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, but for all s values. In this way we improve on the HEFT that fails as interactions become stronger with growing s and we provide a natural framework for the decay of dynamically generated resonances into WW, ZZ and γγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \gamma $$\end{document} pairs.
引用
收藏
相关论文
共 106 条
[1]  
Alonso R(2016)undefined Phys. Lett. B 754 335-undefined
[2]  
Jenkins EE(2013)undefined Phys. Rev. D 87 055019-undefined
[3]  
Manohar AV(2015)undefined JHEP 1503 043-undefined
[4]  
Alonso R(2014)undefined JHEP 1410 044-undefined
[5]  
Gavela MB(2013)undefined EPJ Web Conf. 60 19009-undefined
[6]  
Merlo L(2016)undefined Eur. Phys. J. C 76 233-undefined
[7]  
Rigolin S(1993)undefined Int. J. Mod. Phys. A 8 4937-undefined
[8]  
Yepes J(2010)undefined JHEP 1005 089-undefined
[9]  
Gavela MB(1980)undefined Phys. Rev. D 22 200-undefined
[10]  
Kanshin K(1980)undefined Phys. Rev. D 22 1166-undefined