A projection-like method for quasimonotone variational inequalities without Lipschitz continuity

被引:0
作者
Xiaoxi Jia
Lingling Xu
机构
[1] University of würzburg,Institute of Mathematics
[2] Nanjing Normal University,School of Mathematical Sciences, Jiangsu Key Laboratory for NSLSCS
来源
Optimization Letters | 2022年 / 16卷
关键词
Projection-like method; Variational inequality problem; Quasimonotone operator; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
For most projection methods, the operator of a variational inequality problem is assumed to be monotone (or pseudomonotone) and Lipschitz continuous. In this paper, we present a projection-like method to solve quasimonotone variational inequality problems without Lipschitz continuity. Under some mild assumptions, we prove that the sequence generated by the proposed algorithm converges to a solution. Numerical experiments are provided to show the effectiveness of the method.
引用
收藏
页码:2387 / 2403
页数:16
相关论文
共 44 条
[1]  
Korpelevich GM(1976)The extragradient method for finding saddle points and other problems Ekonomika i Mat Metody. 12 747-756
[2]  
Censor Y(2011)The subgradient extragradient method for solving variational inequalities in Hilbert space J. Optim. Theory Appl. 148 318-335
[3]  
Gibali A(2011)Strong convergence of subgradient extragradient methods for the variational inequality problems in Hilbert space Optim. 26 827-845
[4]  
Reich S(2012)Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space Optim. 61 1119-1132
[5]  
Censor Y(2018)A new Bregman projection method for solving variational inequalities in Hilbert spaces Pure Appl. Funct. Anal. 3 403-415
[6]  
Gibali A(2018)New extragradient-like algorithms for strongly pseudomonotone variational inequalities J. Glob. Optim. 70 385-399
[7]  
Reich S(2014)An extragradient algorithm for monotone variational inequalities Cybern. Syst. Anal. 50 271-277
[8]  
Censor Y(1976)Monotone operators and proximal point algorithm SIAM J. Control. Optim. 14 877-898
[9]  
Gibali A(2006)A new double projection algorithm for variational inequalities J. Comput. Appl. Math. 185 166-173
[10]  
Reich S(2014)The subgradient double projection algorithm for solving variational inequalities Acta Math. Appl. Sin. 37 968-975