Rank-Awareness Sparse Blind Deconvolution Using Modulated Input

被引:0
|
作者
Jingchao Zhang
Qian Cao
Yinuo Su
Liyan Qiao
机构
[1] Harbin Institute of Technology,Department of Automatic Test and Control
来源
Circuits, Systems, and Signal Processing | 2023年 / 42卷
关键词
Sparse blind deconvolution; -norm regularization; Block-sparse recovery; Rank-one constraint; Compressed sensing; Random demodulation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents rank-awareness algorithms to solve sparse blind deconvolution using modulated input. We consider sparse blind deconvolution as a rank-one column-sparse matrix recovery problem, so the proposed algorithms can use both the rank-one property and the sparsity of the unknowns. Unknown input s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{s}$$\end{document} is first multiplied by a random sign sequence r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{r}$$\end{document} and then convolved with an arbitrary filter h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{h}$$\end{document} to obtain the measurements y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}$$\end{document}. The unknown signal s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{s}$$\end{document} is assumed to have a sparse representation. Sparse blind deconvolution using modulated input has unique applications, such as the blind calibration of the random demodulation system. When the number of measurements has satisfied certain conditions, blind deconvolution can be solved without considering signal sparsity. This paper mainly studies how to use signal sparsity to reduce the number of measurements required for sparse blind deconvolution. We propose two methods to solve this problem. The first method uses the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm regularization to promote the unknown signal to iterate in the direction of sparsity. The second method transforms the sparse blind deconvolution problem into a rank-one constrained block-sparse signal recovery problem, and we propose the rank-awareness sparse blind demodulation algorithm to solve it. Our proposed methods could effectively reduce the number of measurements required for sparse blind deconvolution. Under certain conditions, our proposed sparse blind deconvolution algorithms required 320 and 160 measurements, while 400 measurements were required when signal sparsity was not considered. The simulation results verify the effectiveness of the proposed algorithms.
引用
收藏
页码:6684 / 6700
页数:16
相关论文
共 32 条
  • [21] Solving Quadratic Systems With Full-Rank Matrices Using Sparse or Generative Priors
    Chen, Junren
    Ng, Michael K.
    Liu, Zhaoqiang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 477 - 492
  • [22] Acceleration of Perfusion MRI Using Locally Low-Rank Plus Sparse Model
    Dankova, Marie
    Rajmic, Pavel
    Jirik, Radovan
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, LVA/ICA 2015, 2015, 9237 : 514 - 521
  • [23] Sparse Signal Reconstruction Using Blind Super-Resolution With Arbitrary Sampling
    Hezave, Hoomaan
    Javadzadeh, Milad
    Kahaei, Mohammad Hossein
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (615-619) : 615 - 619
  • [24] Sparse BLIP: BLind Iterative Parallel Imaging Reconstruction Using Compressed Sensing
    She, Huajun
    Chen, Rong-Rong
    Liang, Dong
    DiBella, Edward V. R.
    Ying, Leslie
    MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (02) : 645 - 660
  • [25] Fast Reconstruction of Three-Quarter Sampling Measurements Using Recurrent Local Joint Sparse Deconvolution and Extrapolation
    Grosche, Simon
    Regensky, Andy
    Sinn, Alexander
    Seiler, Jurgen
    Kaup, Andre
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (05) : 2398 - 2402
  • [26] UNDER-SAMPLED FUNCTIONAL MRI USING LOW-RANK PLUS SPARSE MATRIX DECOMPOSITION
    Singh, Vimal
    Tewfik, Ahmed H.
    Ress, David B.
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 897 - 901
  • [27] Multipolarization Through-Wall Radar Imaging Using Low-Rank and Jointly-Sparse Representations
    Van Ha Tang
    Bouzerdoum, Abdesselam
    Son Lam Phung
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1763 - 1776
  • [28] Accelerating 3D-T1ρ mapping of cartilage using compressed sensing with different sparse and low rank models
    Zibetti, Marcelo V. W.
    Sharafi, Azadeh
    Otazo, Ricardo
    Regatte, Ravinder R.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (04) : 1475 - 1491
  • [29] Sketching Sparse Low-Rank Matrices With Near-Optimal Sample- and Time-Complexity Using Message Passing
    Liu, Xiaoqi
    Venkataramanan, Ramji
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (09) : 6071 - 6097
  • [30] Bio-SCOPE: fast biexponential T1ρ mapping of the brain using signal-compensated low-rank plus sparse matrix decomposition
    Zhu, Yanjie
    Liu, Yuanyuan
    Ying, Leslie
    Liu, Xin
    Zheng, Hairong
    Liang, Dong
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (06) : 2092 - 2106