Rank-Awareness Sparse Blind Deconvolution Using Modulated Input

被引:0
|
作者
Jingchao Zhang
Qian Cao
Yinuo Su
Liyan Qiao
机构
[1] Harbin Institute of Technology,Department of Automatic Test and Control
来源
Circuits, Systems, and Signal Processing | 2023年 / 42卷
关键词
Sparse blind deconvolution; -norm regularization; Block-sparse recovery; Rank-one constraint; Compressed sensing; Random demodulation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents rank-awareness algorithms to solve sparse blind deconvolution using modulated input. We consider sparse blind deconvolution as a rank-one column-sparse matrix recovery problem, so the proposed algorithms can use both the rank-one property and the sparsity of the unknowns. Unknown input s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{s}$$\end{document} is first multiplied by a random sign sequence r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{r}$$\end{document} and then convolved with an arbitrary filter h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{h}$$\end{document} to obtain the measurements y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}$$\end{document}. The unknown signal s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{s}$$\end{document} is assumed to have a sparse representation. Sparse blind deconvolution using modulated input has unique applications, such as the blind calibration of the random demodulation system. When the number of measurements has satisfied certain conditions, blind deconvolution can be solved without considering signal sparsity. This paper mainly studies how to use signal sparsity to reduce the number of measurements required for sparse blind deconvolution. We propose two methods to solve this problem. The first method uses the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm regularization to promote the unknown signal to iterate in the direction of sparsity. The second method transforms the sparse blind deconvolution problem into a rank-one constrained block-sparse signal recovery problem, and we propose the rank-awareness sparse blind demodulation algorithm to solve it. Our proposed methods could effectively reduce the number of measurements required for sparse blind deconvolution. Under certain conditions, our proposed sparse blind deconvolution algorithms required 320 and 160 measurements, while 400 measurements were required when signal sparsity was not considered. The simulation results verify the effectiveness of the proposed algorithms.
引用
收藏
页码:6684 / 6700
页数:16
相关论文
共 32 条
  • [1] Rank-Awareness Sparse Blind Deconvolution Using Modulated Input
    Zhang, Jingchao
    Cao, Qian
    Su, Yinuo
    Qiao, Liyan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (11) : 6684 - 6700
  • [2] Rank Awareness in Joint Sparse Recovery
    Davies, Mike E.
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (02) : 1135 - 1146
  • [3] Sparse Blind Deconvolution Method for Wall Parameters Estimation
    Qu, Lele
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] On rank awareness, thresholding, and MUSIC for joint sparse recovery
    Blanchard, Jeffrey D.
    Leedy, Caleb
    Wu, Yimin
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 482 - 495
  • [5] Sparse Blind Deconvolution with Nonconvex Optimization for Ultrasonic NDT Application
    Gao, Xuyang
    Shi, Yibing
    Du, Kai
    Zhu, Qi
    Zhang, Wei
    SENSORS, 2020, 20 (23) : 1 - 14
  • [6] A note on the blind deconvolution of multiple sparse signals from unknown subspaces
    Cosse, Augustin
    WAVELETS AND SPARSITY XVII, 2017, 10394
  • [7] Sparse Blind Speech Deconvolution with Dynamic Range Regularization and Indicator Function
    Guan, Jian
    Wang, Xuan
    Wang, Wenwu
    Huang, Lei
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (10) : 4145 - 4160
  • [8] Sparse Blind Speech Deconvolution with Dynamic Range Regularization and Indicator Function
    Jian Guan
    Xuan Wang
    Wenwu Wang
    Lei Huang
    Circuits, Systems, and Signal Processing, 2017, 36 : 4145 - 4160
  • [9] Blind Deconvolution Using Convex Programming
    Ahmed, Ali
    Recht, Benjamin
    Romberg, Justin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1711 - 1732
  • [10] SHORT-AND-SPARSE DECONVOLUTION VIA RANK-ONE CONSTRAINED OPTIMIZATION (ROCO)
    Cheng, Cheng
    Dai, Wei
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5882 - 5886