The number of spanning trees of a graph

被引:0
作者
Kinkar C Das
Ahmet S Cevik
Ismail N Cangul
机构
[1] Sungkyunkwan University,Department of Mathematics
[2] Faculty of Science,Department of Mathematics
[3] Selçuk University,Department of Mathematics
[4] Faculty of Arts and Science,undefined
[5] Uludag University,undefined
[6] Gorukle Campus,undefined
来源
Journal of Inequalities and Applications | / 2013卷
关键词
graph; spanning trees; independence number; clique number; first Zagreb index;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple connected graph of order n, m edges, maximum degree Δ1 and minimum degree δ. Li et al. (Appl. Math. Lett. 23:286-290, 2010) gave an upper bound on number of spanning trees of a graph in terms of n, m, Δ1 and δ:
引用
收藏
相关论文
共 34 条
[1]  
Grimmett GR(1976)An upper bound for the number of spanning trees of a graph Discrete Math 16 323-324
[2]  
Grone R(1988)A bound for the complexity of a simple graph Discrete Math 69 97-99
[3]  
Merris R(2007)A sharp upper bound for the number of spanning trees of a graph Graphs Comb 23 625-632
[4]  
Das KC(1983)Spanning trees in regular graphs Eur. J. Comb 4 149-160
[5]  
McKay BD(1994)The Laplacian spectrum of a graph II SIAM J. Discrete Math 7 221-229
[6]  
Grone R(1994)Laplacian matrices of graphs: a survey Linear Algebra Appl 197 143-176
[7]  
Merris R(2013)Sharp upper bounds on the spectral radius of the Signless Laplacian matrix of a graph Appl. Math. Comput 219 5025-5032
[8]  
Merris R(1958)On the arithmetic and geometric means and on Holder’s inequality Proc. Am. Math. Soc 59 452-459
[9]  
Das KC(2010)The number of spanning trees of a graph Appl. Math. Lett 23 286-290
[10]  
Maden AD(1972)Graph theory and molecular orbitals. Total Chem. Phys. Lett 17 535-538